

TALUM INŠTITUT, raziskava materialov in varstvo okolja d.o.o.

Tovarniška cesta 10, 2325 Kidričevo Tel: +386 (0)2 7995 361, Fax: +386 (0)2 7995 375, Email: marko.homsak@talum.si, www.talum.si Court of registration: Ptuj District Court, Company registration no.: 3855589000, Share capital: EUR 63,000, VAT ID no.: SI20310676, Current account no.: SI56 0420 2000 1750 496 (NKBM)

Soil status report for the site of the planned SFDS construction

for

Nuklearna elektrarna Krško d.o.o.

Copy:

1 2 3

Kidričevo, 29 July 2020

🗖 🛧 🗉 🛡 🌨 🛛 Lahkota prihodn	osti		
TALUM Tovarna al	uminija d. d. Kidričevo, Tovarniška cesta 10, 2325 Kidričevo, tel. 02 7995 100, faks: 02 7995 103, www.talum.si		
TITLE:	Soil status report for the site of the planned SFDS construction		
DOCUMENT NO.:	360/2020		
DATE OF DOCUMENT:	29 July 2020		
NAME OF DOCUMENT:	Poročilo o stanju tal na lokaciji nameravane gradnje SFDS_360-2020.doc		
NUMBER OF COPIES:	3		
CLIENT:	Nuklearna elektrarna Krško d.o.o. Vrbina 12, SI-8270 Krško, Slovenia Sabina Pungerčar (client's responsible person)		
INVESTOR:	Nuklearna elektrarna Krško d.o.o. Vrbina 12, SI-8270 Krško, Slovenia Sabina Pungerčar (investor's responsible person)		
CONTRACT NO.:	3200873		
DATE OF CONTRACT:	18 June 2020		
CONTRACTOR:	TALUM INŠTITUT, raziskava materialov in varstvo okolja, d.o.o. Tovarniška cesta 10, SI-2325 Kidričevo, Slovenia		
CONTRACTOR'S AUTHORISATION NO .:	MOP ARSO authorisation no. 35435-18/2019-3 of 25 November 2019		
CONTRACTOR'S ACCREDITED ACTIVITY:	Accreditation at SA no. LP-045, in accordance with EN ISO/IEC 17025		
CONTRACTOR'S TASKS: Head: Associates:	Assistant Professor Marko Homšak Rok Gomilšek Viktor Napast		
Subcontractor – pedology section:	AGRARIUS, tla in okolje, Tomaž Kralj s.p. Gorjuše 17b, SI-4264 Bohinjska Bistrica, Slovenia Dr Tomaž Kralj		
	stamp/signature		
Subcontractor – chemical section:	AGRICULTURAL INSTITUTE OF SLOVENIA		
	Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia		
	ALS Czech Republic s.r.o.		
	Na Harte 336/9, 190 00 Prague 9, Czech Republic		
	Person responsible for task:		

Assistant Professor Marko Homšak

KIDRIČEVO

TABLE OF CONTENTS

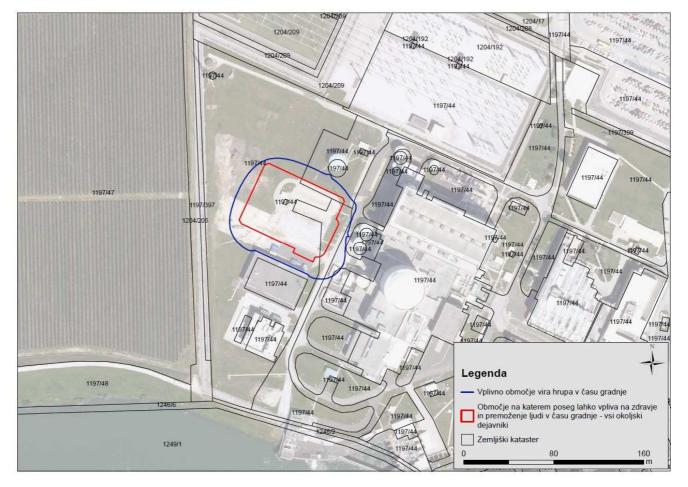
TABLE	OF CONTENTS	4
1	INTRODUCTION	5
2	OBJECTIVE OF RESEARCH AND DESCRIPTION OF SITE	6
3	DESCRIPTION OF SOIL CHARACTERISTICS AT THE SITE	8
3.1	Description of soil and pedological conditions	
3.2	Description of site	
3.3	Description of geomorphological properties	9
3.4	Presentation of protected areas and areas of protected species	11
	3.4.1 Water protection areas	11
	3.4.2 Other protected areas	11
4	RECORDING OF SOIL STATUS	12
4.1	Preparation of a sampling plan and the taking of soil samples	12
4.2	Quantity of soil samples	20
4.3	Transport and storage of samples	21
4.4	Preparation of samples in the laboratory	21
4.5	Recording of soil status	22
4.6	Status of soil sampling points at the site	31
4.6 4.7	Status of soil sampling points at the site Evaluation of soil pollution status	
-		33

1 INTRODUCTION

This document contains a soil status report for the site of the planned SFDS construction for the client Nuklearna elektrarna Krško d.o.o., business address Vrbina 12, SI-8270 Krško (hereinafter: NEK d.o.o.), pursuant to a request for a tender no. 101592-2 of 9 June 2020.

As part of the NEK Safety Upgrade Project (PNV), NEK d.o.o. plans to upgrade the spent fuel (SF) storage technology by introducing dry storage. Within the existing nuclear facility complex on land parcel no 1197/44 in cadastral municipality 1321 Leskovec, it intends to construct a facility for the dry storage of spent fuel with a floor area of 3,312 m² and a height of 20.48 m. A more detailed description of the activity is provided in the technical specification ('Description of existing soil status and the implementation of a soil pollution analysis at the site of the planned construction of the SFDS, document author: Nuklearna elektrarna Krško d.o.o., report no.: SP-ES1371, report date: June 2020')

For the project in question, NEK d.o.o. submitted an application for a construction permit under the integrated (combined) procedure to the Ministry of the Environment and Spatial Planning, Dunajska cesta 48, SI-1000 Ljubljana. Among other things, the project involved the drafting of an environmental impact assessment (EIA) for the planned activity. The EIA was produced in accordance with the Decree on the method of drafting and on the content of the report on the effects of planned activities affecting the environment (Official Gazette of RS, Nos. 35/09, 40/17). During the process of acquiring the opinions on the acceptability of the construction under the integrated procedure for the granting of a construction permit for the project (with environmental impacts), the Slovenian Environment Agency, Vojkova 1b, SI-1000 Ljubljana requested a more detailed description of the status of the soil and of soil pollution at the site of the planned SFDS construction.


The soil status report for the site of the planned SFDS construction has been drafted in accordance with the requirements set out in:

- the Rules on the operational monitoring of soil status (Official Gazette of RS, Nos. 66/17, 4/18).
- the Decree on limit values, alert thresholds and critical immission values of dangerous substances in soil (Official Gazette of RS, Nos. 68/96, 41/04 [ZVO-1]);
- Decree on the criteria for determining the level of environmental pollution resulting from the contamination of soil with dangerous substances (Official Gazette of RS, No. 7/19).

2 OBJECTIVE OF RESEARCH AND DESCRIPTION OF SITE

The objective of the research is to describe the existing status of the soil and of soil pollution at the site of the planned SFDS construction on parcel no 1197/44 in cadastral municipality 1321 Leskovec.

Figure 1 below shows the site of the planned SFDS construction on a digital orthophotograph.

Figure 1: Presentation of the wider area under consideration. The red line traces the approximate extent of the activity during the construction period.

Legenda	Кеу
Vplivno območje vira hrupa v času gradnje	Area of impact of the noise source during the construction period
Območje na katerem poseg lahko vpliva na zdravje in premoženje ljudi v času gradnje – vsi okoljski dejavniki	Area in which the activity could have an impact on health and property in the construction period – all environmental factors
Zemljiški kataster	Cadastral register

The location in question is an anthropogenic area within the area of the Krško nuclear power plant. Soil has been entirely removed from or mixed into the major part of the area in the past. The selection of the sampling points was also adjusted to take account of this.

Figure 2: Presentation of the area under consideration. The red line marks the centroid of the construction area.

3 DESCRIPTION OF SOIL CHARACTERISTICS AT THE SITE

3.1 Description of soil and pedological conditions

Soil has been entirely or partly removed from, mixed into or covered with gravel in the major part of the area set aside for SFDS construction. Across the wider area, there is well-developed alluvial soil on predominantly carbonate gravel. The channel of the Sava river is located in the immediate vicinity. In the past, the soil arose from alluvial deposits from the Sava. The pH value of the soil is typically over 7, with very high saturation with base cations and a medium-heavy texture. Based on a field inspection, we can conclude that the soil is shallow to medium-deep. There are no noticeable signs of glazing.

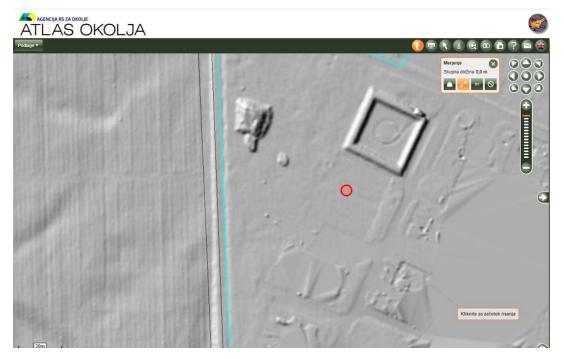
3.2 Description of site

The location of the planned SFDS construction is an area within the Krško nuclear power plant complex. It has an entirely flat relief on the first Sava terrace and in the vicinity of the Sava channel. The surface and soil have been entirely changed by human activity. Detailed information on the site is given below.

Figure 3: Presentation of the central area under consideration. Pictured from the east (author: NEK, date: 22 June 2020).

Coordinates D48 (y,x) – centroid	540242, 88420
Height above sea level (m) – centroid	155.5
Incline (%)	0
Exposition	/
Macro relief	Flat
Micro relief	Flat
Form of surface at microlocation	Evenly variegated
Land use	Industrial area
Human impact	Very considerable
Bedrock	Predominantly carbonate gravel
Water permeability of soil	Very quick
Availability of water to main plant species	Sufficient
Saturation of soil with water	Rarely saturated
Floods	Not present
Groundwater	Not present
Surface rockiness and stoniness	No
Erosion	Natural erosion noticeable
Potential pollution sources	Industry

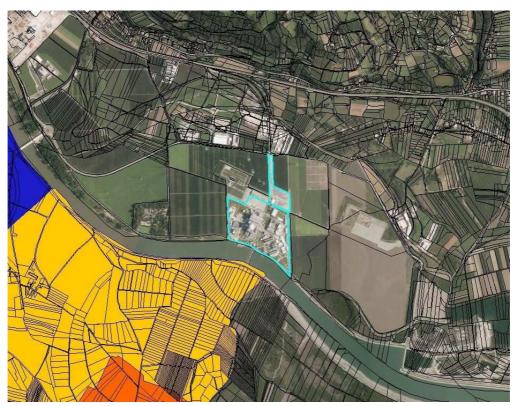
Table 1: Basic information about the site under consideration.


3.3 Description of geomorphological properties

The photographs below show the location of soil investigations for the planned SFDS construction.

Figure 4) a, b, c, d: Presentation of the area of the planned SFDS construction (author: NEK, date: 22 June 2020).

An analysis of the LIDAR data shows a flat surface with an even micro relief.


Figure 5: Presentation of the relief with the red line marking the centroid of the construction area (source: Environment Atlas, July 2020).

AGENCIJA RS ZA OKOLJE	SLOVENIAN ENVIRONMENT AGENCY
ATLAS OKOLJA	ENVIRONMENT ATLAS
Podlage	Bases
Merjenje	Measurement
Skupna dolžina 0,0 m	Total length 0.0 m
Kliknite za začetek risanja	Click to start drawing

3.4 Presentation of protected areas and areas of protected species

3.4.1 Water protection areas

The site under consideration (marked parcel no 1197/44, cadastral municipality 1321 Leskovec) is not located in a water protection area.

Figure 6: Location shown on the map of water protection areas (source: Environment Atlas, July 2020).

3.4.2 Other protected areas

Judging by selected sub-layers of the "Nature" layer in the Environment Atlas, the site under consideration is not located in the area of other protected areas.

4 RECORDING OF SOIL STATUS

4.1 Preparation of a sampling plan and the taking of soil samples

Before recording soil status, we assembled a working group tasked with preparing a sampling plan, paying due regard to the SIST ISO 10381-1, SIST ISO 10381-2 and SIST ISO 10381-5 standards, as well as to the Rules on the operational monitoring of soil status (Official Gazette of RS, Nos. 66/17 and 4/18).

Before commencing the sampling process, we presented the soil sampling plan to the client's representatives. On the basis of the additional information obtained from the client, we divided the entire location into four equally sized sub-areas. They cover the whole site sufficiently well. Each sampling point covered approx. $\frac{1}{4}$ of the area of the site of the planned SFDS construction. We took samples from two depths: – surface sample at a depth of (0–5) cm – lower sample at a depth of (5–20) cm.

The sampling depth was determined on the basis of preliminary soil soundings in the field. On most of the site under consideration, the soil has been completely removed, mixed in or covered with gravel. As the average depth of the remaining soil is approx. 20 cm, 0–5 and 5–20 cm were the depths selected for sampling. These two depths ensure that the actual properties of the soil are captured. The original natural soil is preserved in a very small (extreme southern) section of the site.

We recorded the soil status on 23 June 2020.

We took between 10 and 25 increments systematically within the network from both depths at every sampling point. This means that we obtained two average soil samples at every sampling point. The distribution of the parameters at the site is unknown. The soil samples were taken using a grooved probe on the same day. The figure below shows the soil sampling grid.

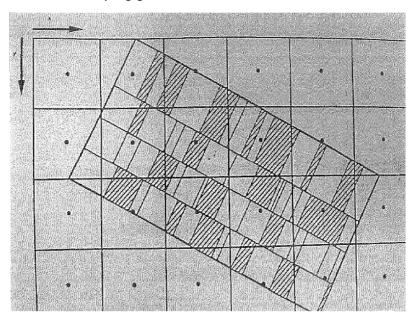


Figure 7: Presentation of the correct distribution of sampling points in the grid.

After the completion of sampling at a sampling point, we cleaned the tool and wiped it dry with a paper towel. We also followed the instruction to discard the first probe at every sampling point. We transported the soil samples to the laboratory in polypropylene (PP) containers. The document accompanying the samples is an integral part of the final report. A soil sampling record was also drawn up at each sampling point. The sampling points are shown below.

TLANEK-3

Figure 8: Presentation of the location of the four sampling points (TLANEK-1, TLANEK-2, TLANEK-3, TLANEK-4) and the locations of the three pedological profiles (1–3) across the entire site of the planned SFDS construction. The sampling points were chosen in line with the presence of soil in the area. No soil was present in the central section. The area is infilled with gravel. The digital orthophotograph is from 2011 and does not reflect the current situation in nature.

Three soil profiles were excavated and described at the site. The first, in the extreme southern part and constituting the original natural soil, does not represent the soil at the site under consideration, as this has been changed and removed as a result of human intervention (Figure 9). The second soil profile was described in the TLANEK-1 area (Figure 11) and the third in the TLANEK-4 area (Figure 13). The soil profiles are described in accordance with the EN ISO 25177 standard.

Figure 9: Presentation of profile no. 1 (eutric alluvial soil on gravel). This is the natural soil typical of the wider area.

Figure 10: Presentation of the wider area of the excavation of profile no. 1.

A description of the site and of the profile of the representative soils is given below.

Date of description	23 June 2020
Pedologist	Tomaž Kralj
Location	Vrbina
Coordinates D48 (y,x)	540258, 88387
Height above sea level (m)	155
Incline (%)	0
Exposition	/
Macro relief	Flat
Micro relief	Flat
Form of surface at microlocation	Flat
Land use	Urban – industrial area
Human impact	Pronounced
Bedrock	Alluvial deposit
Water permeability of soil	Very good
Availability of water to main plant species	Sufficient
Saturation of soil with water	Rarely saturated
Floods	No
Groundwater	No
Surface rockiness and stoniness	0%
Erosion	Not noticeable
Potential pollution sources	Industry

Table D. Data and Location of		and the standard st	all a secolar and the self of a list
Table 2: Data on location of	profile no. 1 and gene	rai soli characteristics	described in the field.

Table 3: Data from terrain description of the morphological characteristics of profile no. 1.

Number	Label	Depth of horizon (cm)	Description of horizon
H1	A1	0–10	BOUNDARY: clear, slightly undulating. SKELETON: 3%, rounded, maximum 3 cm. STRUCTURE: cloddy, well-expressed, durable. MOISTURE: fresh. CONSISTENCY: friable. BIOLOGICAL ACTIVITY: not noticeable. ROOTS: medium thick. COLOUR: 10YR 4/3. TEXTURE: L-SL. ORGANIC MATTER: humus. OTHER MATERIALS: not noticeable. MARMORATION: not noticeable.
H2	A2	10–40	BOUNDARY: clear, slightly undulating. SKELETON: 3%, rounded, maximum 4 cm. STRUCTURE: cloddy, well-expressed, durable. MOISTURE: fresh. CONSISTENCY: friable. BIOLOGICAL ACTIVITY: not noticeable. ROOTS: thin. COLOUR: 10YR 4/3. TEXTURE: L-SL. ORGANIC MATTER: humus. OTHER MATERIALS: not noticeable. MARMORATION: not noticeable.
H3	С	40+	Predominantly carbonate gravel

On the basis of excavation and soil description, the soil is classified as: Alluvial soil, typical (deep, eutric, mollic, medium deep humus) on carbonate gravel.

Figure 11: Soil profile no. 2. Shallow anthropogenic rendzina.

Date of description	23 June 2020
Pedologist	Tomaž Kralj
Location	Vrbina
Coordinates D48 (y,x)	540274, 88417
Height above sea level (m)	155
Incline (%)	0
Exposition	1
Macro relief	Flat
Micro relief	Flat
Form of surface at microlocation	Flat
Land use	Urban – industrial area
Human impact	Pronounced
Bedrock	Alluvial deposit
Water permeability of soil	Very good
Availability of water to main plant species	Sufficient
Saturation of soil with water	Rarely saturated
Floods	No
Groundwater	No
Surface rockiness and stoniness	0%
Erosion	Not noticeable
Potential pollution sources	Industry

Figure 12: Location of soil profile no. 2 in the TLANEK-1 area.

Table T. Dala VITIVLALIVIT VI DIVITE TIV. Z ATU VETETAI SVITUTATALLETISLIUS VESUTIDEV ITI LITE TETU	Table 4: Data on location of	f profile no. 2 and general soil	characteristics described in the field.
---	------------------------------	----------------------------------	---

Table 5: Data from terrain description of the morphological characteristics of profile no. 2.

No.	Label	Depth of horizon (cm)	Description of horizon
H1	A	0–20	BOUNDARY: clear, slightly undulating. SKELETON: 1%, rounded, maximum 3 cm. STRUCTURE: cloddy, well-expressed, durable. MOISTURE: fresh. CONSISTENCY: friable. BIOLOGICAL ACTIVITY: not noticeable. ROOTS: medium thick. COLOUR: 10YR 4/3. TEXTURE: L-SL. ORGANIC MATTER: humus. OTHER MATERIALS: not noticeable. MARMORATION: not noticeable.
H2	С	40+	Predominantly carbonate gravel

On the basis of excavation and soil description, the soil is classified as: Rendzina, typical (shallow, slightly skeletal, anthropogenic) on carbonate gravel.

Figure 13: Soil profile no. 3. Shallow anthropogenic rendzina.

Figure 14: Presentation of the wider area of excavation of soil profile no. 3 in the TLANEK-4 area.

Date of description	23 June 2020
Pedologist	Tomaž Kralj
Location	Vrbina
Coordinates D48 (y,x)	540214, 88420
Height above sea level (m)	155
Incline (%)	0
Exposition	/
Macro relief	Flat
Micro relief	Flat
Form of surface at microlocation	Flat
Land use	Urban – industrial area
Human impact	Pronounced
Bedrock	Alluvial deposit
Water permeability of soil	Very good
Availability of water to main plant species	Sufficient
Saturation of soil with water	Rarely saturated
Floods	No
Groundwater	No
Surface rockiness and stoniness	0%
Erosion	Not noticeable
Potential pollution sources	Industry

Table 6: Data on location of profile no. 3 and general soil characteristics described in the field.

Table 7: Data from terrain description of the morphological characteristics of profile no. 3.

No.	Label	Depth of horizon (cm)	Description of horizon
H1	A	0–20	BOUNDARY: clear, slightly undulating. SKELETON: 1%, rounded, maximum 3 cm. STRUCTURE: cloddy, well-expressed, durable. MOISTURE: fresh. CONSISTENCY: friable. BIOLOGICAL ACTIVITY: not noticeable. ROOTS: medium thick. COLOUR: 10YR 4/2. TEXTURE: L-SL. ORGANIC MATTER: humus. OTHER MATERIALS: not noticeable. MARMORATION: not noticeable.
H2	CA	20–30	BOUNDARY: clear, slightly undulating. SKELETON: 60%, rounded, maximum 5 cm. STRUCTURE: cloddy, well-expressed, durable. MOISTURE: fresh. CONSISTENCY: friable. BIOLOGICAL ACTIVITY: not noticeable. ROOTS: medium thick. COLOUR: 10YR 4/2. TEXTURE: L-SL. ORGANIC MATTER: humus. OTHER MATERIALS: not noticeable. MARMORATION: not noticeable.
H3	С	30+	Predominantly carbonate gravel

On the basis of excavation and soil description, the soil is classified as: Rendzina, typical (shallow to medium deep, slightly skeletal, anthropogenic) on carbonate gravel.

The sampling point labels were assigned to ensure traceability. Information on the sampling points at the site of the planned SFDS construction is given in the table below.

Sampling point label	Description of sampling point	GKX	GKY	Soil layer (cm)	Sample label
	TLANEK-1 Figure 8 (sampling point 88391 540263 -		0–5	TLANEK-1 0-5	
ILANEK-1			540263	5–20	TLANEK-1 5-20
	Figure 8 (sampling point 2)	88408	540270	0–5	TLANEK-2 0-5
TLANEK-2				5–20	TLANEK-2 5-20
	Figure 8 (sampling point	00425	E 400EE	0–5	TLANEK-3 0-5
I LANEK-3	LANEK-3 [3] [34020 (3011) [3010] [88425 [540255]	540255	5–20	TLANEK-3 5-20	
	Figure 8 (sampling point	00422	F40017	0–5	TLANEK-4 0-5
TLANEK-4	4)	88423	540217	5–20	TLANEK-4 5-20

Table 8: Information on the soil sampling points.

We used the following compulsory equipment for the sampling of soil in the field:

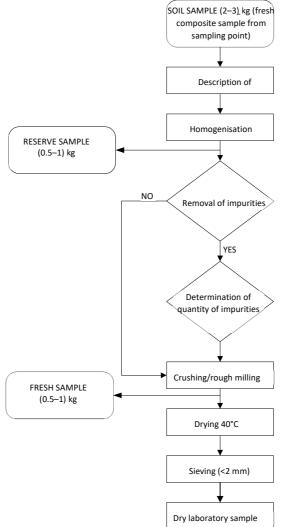
- trowel, knife, tape measure;
- probe (diameter at least 4 cm) or a drill and a tool for removing the sample from the probe or drill made from a material that does not affect the quality of the sample taken;
- topographical map (TTN, DOF, etc.);
- compass, altimeter, GPS;
- camera;
- Munsell Soil Color Chart;
- hydrochloric acid (1:3);
- pH indicator or indicator strips (pH 2–9);
- form for recording samples from Annex 3 to these rules;
- steel measuring tape (length 50 m) and tracers;
- buckets;
- bags for the taking of samples without impurities that could affect the quality of the sample;
- deionised water and paper towels for cleaning probes or drills and tools, and cooler bags or a suitably arranged space (darkened and cooled) for the transport of samples.

4.2 Quantity of soil samples

The quantity of a sample for determining the various chemical parameters must be sufficient for the homogenisation, sampling, analysis and additional samples for the subcontractors.

A sample contains at least 300–500 g of fine soil (after the removal of larger particles), which applies to single as well as composite samples, where prior homogenisation is required. A sample taken for the purpose of providing reference material or for storage in the database must normally be heavier than 2,000 g. For the monitoring of soil status, they may also be up to 3,000 g.

Oversized particles are removed, weighed, evaluated, recorded and described, and the results compared with the composition of the original sample. This procedure must be conducted in compliance with the ISO 11464 standard. These instructions do not prescribe sampling for physical and biological investigations.


The containers are made from suitable material for the sampling and storage of soil so that the samples are not contaminated and that they meet the analytical requirements regarding the presence of organic (oils, tars, solvents, volatile compounds) and inorganic matter.

4.3 Transport and storage of samples

The samples are delivered to the laboratory after the sampling process is completed. Samples must be stored in a cool, dark place at a temperature of (4 ± 2) °C. By cooling or freezing a sample, we can extend the period for which the initial sample composition remains stable. The instructions of an accredited laboratory must be followed for samples sent to a subcontractor's analyst.

4.4 Preparation of samples in the laboratory

The preparation of samples in the laboratory is set out in the flowchart below.

The sample must be examined in detail and entered in the sampling sheet for observation and any foreign unknown substances, remnants of vegetation and other relevant characteristics. The sample is photographed.

Homogenisation

We homogenise the field sample by shaking the PP sampling containers with a lid so that all the soil increments are equally distributed throughout the sample.

Reserve sample We archive approx. 0.5 kg of the sample in a glass container at the laboratory – reserve sample.

Removal of impurities and crushing

Any impurities, such as rubber, plastic, etc., and any larger pieces of bedrock or vegetation are removed. After the sample is dried into clumps, it has to be crushed, preferably with a wooden mallet. Prior to this, all stones, pieces of glass, refuse and other pieces larger than 1 cm must be removed, where care must be taken to remove as few of the fine particles that adhere to the larger ones as possible. The weight of the dried material and the weight of the material removed at this point are determined and recorded.

Taking of a fresh laboratory sample

After impurities, outgrowths and stones are removed, the part of the sample is again archived – fresh laboratory sample.

Drying

The drying procedure is prescribed in separate instructions.

Sieving

The dried and crushed sample must be sieved manually or by means of a mechanical shaker. The stones, fresh plant parts and glass that remain in the sieve (< 2 mm) are removed and weighed. The clods that remain in the sieve are crushed and returned back into the sample. The sample that remains in the sieve is handled separately. We take care to ensure that only the minimum quantity of fine material adhering to the larger particles is removed.

4.5 Recording of soil status

As part of the measurements of chemical soil status, the following were performed on the soil samples taken at the sampling points with the relevant labels:

- measurements of the basic pedological parameters: dry matter (d.m.), pH extraction with CaCl₂, share of organic matter, total nitrogen, plant-available phosphorus, plant-available potassium, graininess of soil (texture), cation exchange capacity (CEC), bulk density, electrical conductivity;
- measurements of the concentrations of the indicative soil parameters: parameters in accordance with Annex 1 to the Decree on limit values, alert thresholds and critical immission values of dangerous substances in soil (Official Gazette of RS, Nos. 68/96, 41/04); metals extracted using aqua regia: Cd, Cu, Ni, Pb, Zn, Cr, Hg, Co, Mo, As, total fluorides, BTEX (benzene, toluene, ethylbenzene, xylene), PAH, PCB, DDT/DDD/DDE, drins, HCH compounds, atrazine, simazine, hydrocarbons (mineral oils).

Data on the measurement methods and measuring equipment used for the taking of soil samples and chemical analyses of soil samples as part of measurements of the chemical status of soil is collected in the table below. The analytical methods used are in line with the criteria from the third and fourth paragraphs of Article 11 of the Rules on the operational monitoring of soil status (Official Gazette of RS, Nos. 66/17, 4/18).

For the analysis of soil samples, analytical methods are used (including laboratory, field and online methods) that are validated and documented in accordance with the SIST EN ISO/IEC 17025 standard or with another

equivalent internationally recognised standard based on a set measurement uncertainty and limit of quantification.

No.	Parameter	Measurement method	Equipment used	MU ¹	LOD ²	LOQ ³	Unit	AM ⁴ / VM ⁴
*SAMP	PLING	SIST ISO 10381-1 ISO 10381-4 SIST ISO 10381-5 Probing, combined samples	Grooved probe, trowel, kni PE container	fe, _	-	-	-	-
BASIC	PEDOLOGICAL PARAMETERS	··· J/ ··· ··· ·· ··· ·· ··· ··			-			
1 Dr	ry matter (d.m.)	SIST ISO 11465:1996, SISI ISO 11465:1996 / Cor. 1:2005	Laboratory dryer	0.13%		98.7	%	YES / YES
2 **	pH extraction with CaCl ₂	SIST ISO 10390	pH meter	4.8%	-	-	-	YES / YES
		SIST ISO 14235:1998 - mod.						
3 **Per	rcentage of organic matter	(factor of organic matter/organic C = 1.724) %	UV-VIS; calculation	15%	0.001	0.003	%	NO / YES
			Digestion unit using the					
	*Total nitrogen	ISO 11261: 1995	Kjeldahl method, distillat unit	ion 5%	0.02	0.06	g/kg d.m.	YES / YES
5**	*Plant-available phosphorus	ÖNORM L 1087 mod.	AAS	5%	0.17	0.5	mg P ₂ O ₅ /100 g	NO / YES
6 **	[*] Plant-available potassium	ÖNORM L 1087 mod.	AAS	5%	0.17	0.5	mg K₂O/100 g	NO / YES
7 **0	Graininess of soil (texture)							
-	Clay (< 2 µm)	ISO 11277:2009 mod.	Mechanical analysis	1% (abs) in the region <10%; 2% (abs) in the region >10%;		3	%	NO / YES
-	Fine silt ((2–20) μm)	ISO 11277:2009 mod.	Shaker, sieve, glass cylinder, evaporating dishes, desiccator	1% (abs) in the region <10%; $2%$ (abs) in the region >10%;		3	%	NO / YES
-	Coarse silt ((20–50) μm)	ISO 11277:2009 mod.	Shaker, sieve, glass cylinder, evaporating dishes, desiccator	1% (abs) in the region <10%; $2%$ (abs) in the region >10%;	1	3	%	NO / YES
-	Fine sand ((50–200) µm)	ISO 11277:2009 mod.	Shaker, sieve, glass cylinder, evaporating dishes, desiccator	1% (abs) in the region <10%; $2%$ (abs) in the region >10%;	1	3	%	NO / YES
-	Coarse sand ((200–2000) µm)	ISO 11277:2009 mod.	Shaker, sieve, glass cylinder, evaporating dishes, desiccator	1% (abs) in the region <10%; 2% (abs) in the region >10%;		3	%	NO / YES
-	Texture class	USDA Texture Classification (Soil survey lab. meth. man., 1992)	Calculation	-	-	-	-	NO / YES
8 *	** Cation exchange capacity (CEC)							
	- Exchangeable Ca	NF X31-108 mod.	AAS	5%	0.05	0.15	mmol+/100 g	NO / YES
	- Exchangeable Mg	NF X31-108 mod.	AAS	5%	0.006	0.02	mmol+/100 g	NO / YES

Table 9:	Measurement methods	and measuring e	equipment for t	he taking and	chemical analy	sis of soil samples.

TALUM INŠTITUT d.o.o. • document no.: 360/2020 • date of document: 29 July 2020

	- Exchangeable K	NF X31-108 mod.	AAS	5%	0.05	0.15	mmol+/100 g	NO / YES
	- Exchangeable Na	NF X31-108 mod.	AAS	10%	0.013	0.04	mmol+/100 g	NO / YES
	- Total exchangeable acidity	Mehlich method (mod. Pecch) Soil survey lab. meth. man., 1992	AAS	10%	0.06	0.2	mmol+/100 g	NO / YES
	- Sum of base cations (S)	Soil survey lab. meth. man., 1992	Calculation	10%	0.12	0.4	mmol+/100 g	NO / Y <u>E</u> S
	- Cation exchange capacity (T)	Soil survey lab. meth. man., 1992	Calculation	10%	0.21	0.7	mmol+/100 g	NO / YES
lo.	Parameter	Measurement method	Equipment used	MU ¹	LOD ²	LOQ ³	Unit	AM ⁴ / VM ⁵
	- Base cations share (V)	Soil survey lab. meth. man., 1992	Calculation	30%	-	-	%	NO / YES
)	**Bulk density	CSN EN 13040	Electronic scales	15%	-	100	g/dm ³	YES / YES
0	**Electrical conductivity	ISO 11265:1994	Multimeter	5%	0.003	0.01	mS/m	NO / YES
	AMETERS of the Decree on limit values, a ette of RS, Nos. 68/96, 41/04)	lert thresholds and critical immis	sion values of dangerous	s substances in soil	(Official			
.1		CSN EN ISO 17294-2	ICP-MS	20%	-	0.05	mg/kg d.m.	YES / YES
2	Copper	SIST EN ISO 17294-2, SIST ISO 11466	ICP-MS	38.4%	-	10	mg/kg d.m.	NO / YES
3	Nickel	SIST EN ISO 17294-2, SIST ISO 11466	ICP-MS	31.6%	0.02	1	mg/kg d.m.	NO / YES
.4	Lead	SIST EN ISO 17294-2, SIST ISO 11466	ICP-MS	16.6%	-	1	mg/kg d.m.	NO / YES
5	Zinc	SIST EN ISO 17294-2, SIST ISO 11466	ICP-MS	26.9%	-	10	mg/kg d.m.	NO / YES
6	Chrome	SIST EN ISO 17294-2, SIST ISO 11466	ICP-MS	17.2%	-	1	mg/kg d.m.	NO / YES
7	**Mercury	CSN EN ISO 17852, ISO 16772	Spectrofluorometer	21%	-	50	µg/kg d.m.	YES / YES
8	Cobalt	SIST EN ISO 17294-2, SIST ISO 11466	ICP-MS	7.2%	0.02	1	mg/kg d.m.	NO / YES
9 1	Yolybdenum	SIST EN ISO 17294-2, SIST ISO 11466	ICP-MS	37.2%	-	1	mg/kg d.m.	NO / YES
0	Arsenic	SIST EN ISO 17294-2, SIST ISO 11466	ICP-MS	7.4%	0.13	1	mg/kg d.m.	NO / YES
1	Total fluorides	ISO 10359-1	Ion selective electrode	20%	-	20	mg/kg d.m.	NO / YES
2	**Volatile aromatic hydrocarbons (BTX) ⁷	US EPA 8260, US EPA 5021A, US EPA 5021, US EPA 8015, MADEP 2004, Rev. 1.1, ISO 15009	GC-FID-MS	40%	(^A)	(^B)	mg/kg d.m.	YES / YES
3	**Polycyclic aromatic hydrocarbons (PAH) ⁸	US EPA 8270, CSN EN 15527, ISO 18287	GC-MS	30%	0.0033	0.010	mg/kg d.m.	YES / YES

24	**PCB ⁹	US EPA 8082, ISO 10382, CSN EN 15308	GC-MS	40%	-	0.003	mg/kg d.m.	YES / YES
25	**DDT/DDD/DDE ¹⁰	US EPA 8081, ISO 10382	GC-MS	40%	0.0033	0.010	mg/kg d.m.	YES / YES
26	**Drins ¹¹	US EPA 8081, ISO 10382	GC-MS	40%	0.0033	0.010	mg/kg d.m.	YES / YES
27 **	*HCH compounds ¹²	US EPA 8081, ISO 10382	GC-MS	40%	0.0033	0.010	mg/kg d.m.	YES / YES
28	**Atrazine	US EPA 8081, ISO 10382	GC-MS	40%	0.0033	0.010	mg/kg d.m.	YES / YES
29	**Simazine	US EPA 8081, ISO 10382	GC-MS	40%	0.0033	0.010	mg/kg d.m.	YES / YES
30	**Total hydrocarbons (mineral oils) C10-C4	CSN EN ISO 14039, CSN EN ISO 16703, ISO 16558-2, US EPA ⁰ 8015, US EPA 3550, TBRCC Method 1006	GC-FID	30%	3.3	10	mg/kg d.m.	YES / YES

*Sampling conducted by subcontractor.

**Analysis conducted by subcontractor.

¹ MU – Measurement uncertainty.

² LOD – Limit of detection.

³ LOQ – Limit of quantification.

⁴ AM – Accredited method.

⁵ Validated method.

⁶ Defined as bulk weight.

⁷ Sum of concentrations of benzene, toluene, ethylbenzene, meta- and para-xylene and ortho-xylene. When calculating the sum of the concentrations, for substances for which the measured concentration is below the limit of quantification, the calculation takes a concentration value equal to zero.

⁸ Sum of the concentrations of naphthalene, phenanthrene, anthracene, fluoranthene, benzo(a)anthracene, chrysene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene. When calculating the sum of the concentrations, for substances for which the measured concentration is below the limit of quantification, the calculation takes a concentration value equal to zero.

⁹ Total concentration of PCB 28, 52, 101, 118, 138, 153 and 180.

¹⁰ Total of DDT, DDD and DDE concentrations.

¹¹ Total concentration is the sum of aldrin, dieldrin and endrin.

 12 Total concentration is the sum of a-HCH, β -HCH, γ -HCH and δ -HCH.

^A LOD value for benzene, ethylbenzene and meta- and para-xylene is 0.0067 mg/kg d.m., for toluene 0.033 mg/kg d.m. and for ortho-xylene 0.0033 mg/kg d.m.

^B LOQ value for benzene, ethylbenzene and meta- and para-xylene is 0.020 mg/kg d.m., for toluene 0.100 mg/kg d.m. and for ortho-xylene 0.010 mg/kg d.m.

Tables 10, 11, 12 and 13 collect the results of the pedological and chemical analyses of soil samples taken as part of the task of describing soil status at the site of the planned SFDS construction.

Table 10: Results of the pedological and chemical analyses of soil samples taken as part of the recording of soil status at the site of the planned SFDS construction at the TLANEK-1 sampling point.

Sample no. Sompling date 2020/81190 (0-5) cm 22.0 cm (5-20) cm Parameter Unit 20.0 cm 22.0 cm 21.0 cm 22.0 cm 21.0 cm 22.0 cm 21.0 cm	Sample label		TLANEK-1 0-5	TLANEK-1 5-20
Solleyer (0-5) cm (5-20) cm (2) June 2020 Parameter Unit 23 June 2020 23 June 2020 Parameter Unit 84.90 84.90 Phi extraction with CaCl2. - 7.6 7.8 *Percentage of organic matter % 3.1 2.1 *Total nitrogen g/kg d.m. 1.7 1.1 *Plant-available phosphorus mg P.205 / 100 g. 3.0 2.7 *Plant-available phosphorus mg P.205 / 100 g. 3.0 2.7 *Plant-available phosphorus mg P.205 / 100 g. 3.0 2.2 - Fine sint ((2-20) µm) % 13.0 12.2 - Fine sand ((50-200) µm) % 13.6 13.0 - Carse sait ((20-2000) µm) % 12.6 16.3 - Texture class - L L L * Caton exchange capacity (CEC) * Measurable Ca mmol+/100 g 32.50 32.35 - Measurable K mmol+/100 g 34.29 33.91 - Caton exchange capacity (T)				
Sampling date 22 June 2020 22 June 2020 Parameter Unit BASIC PEDOLOGICAL PARAMETERS 82.40 84.90 Dry matter (d.m.) % 82.40 84.90 * PH extraction with CaCL - 7.6 7.8 Percentage of organic matter % 3.1 2.1 * Total nitrogen g/kg d.m. 1.7 1.1 * Plant-available potassium mg KsO / 100 g 3.0 2.7 * Plant-available potassium mg KsO / 100 g 15 7.3 * Graininess of the soil (texture) - 1.8 22.3 - Coarse silt ((20-200) µm) % 12.6 16.3 - Texture class - L L * Caton exchange capacity (CEC) - L L * Measurable K mmol+/100 g 1.48 1.36 - Base cations (S) mmol+/100 g 0.03 0.03 - Measurable K mmol+/100 g 0.25 99.3 - Measurable Na mmol+/100 g 0.29 93.91	•			-
Parameter Unit BASIC PEDOLOGICAL PARAMETERS Dry matter (d.m.) % 82.40 84.90 *PH extraction with CaCL - 7.6 7.8 *Percentage of organic matter % 3.1 2.1 *Total nitrogen g/kg d.m. 1.7 1.1 *Plant-available phosphorus mg P ₂ O ₂ / 100 g 3.0 2.7 *Plant-available phosphorus mg P ₂ O ₂ / 100 g 3.0 2.7 *Plant-available phosphorus mg P ₂ O ₂ / 100 g 3.0 2.7 *Plant-available phosphorus mg P ₂ O ₂ / 100 g 3.0 2.7 *Fine said ((2 - 20) µm) % 13.0 12.2 - Fine said ((20-200 µm) % 35.4 31.0 - Coarse sait ((20-2000 µm) % 12.6 16.3 - Texture class - L L *Cation exchange capacity (CEC) - Measurable Mg mmol+/100 g 0.30 0.03 *Measurable Ng mmol+/100 g 0.25 93.91 - Cation exchange capacity (T) mm				. ,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Unit	_	
bit bit bit bit PH extraction with CaCl. - 7.6 7.8 *Percentage of organic matter % 3.1 2.1 *Total nitrogen g/kg d.m. 1.7 1.1 *Plant-available phosphorus mg P ₂ O ₂ / 100 g 3.0 2.7 *Plant-available phosphorus mg K ₂ O / 100 g 15 7.3 *Clay (< 2 µm) % 13.0 12.2 - Fine silt ((2–20) µm) % 21.8 22.3 - Coarse silt ((20–200) µm) % 13.6 12.2 - Fine sand ((50–200) µm) % 12.6 16.3 - Texture class - L L L * Cation exchange capacity (CEC) - L L L * Measurable Ca mmol+/100 g 0.28 0.17 * Measurable K mmol+/100 g 1.00 0.25 - Cation exchange capacity (T) mmol+/100 g 34.29 33.91 - Cation exchange capacity (T) mmol+/100 g 35.29 34.16	BASIC PEDOLOGICAL PARAMETERS			
*pH extraction with CaCl. - 7.6 7.8 *Percentage of organic matter % 3.1 2.1 *Pracentage of organic matter g/kg d.m. 1.7 1.1 *Plant-available phosphorus mg Px05 / 100 g 3.0 2.7 *Plant-available phosphorus mg Ks0 / 100 g 15 7.3 *Graininess of the soil (texture) - - 15 7.3 - Fine sint ((2-20) µm) % 13.0 12.2 18 22.3 - Coarse sit ((20-50) µm) % 12.6 16.3 1.6 1.6 - Texture class - - L L * Coarse sand ((200-200) µm) % 12.6 16.3 1.6 3.1 2.35 32.35 * Measurable Ca nmol+/100 g 1.48 1.36 1.4 1.36 * * * * 1.7 * 1.9 3.91 * 7.6 * 3.91 * 7.6 3.93 1.30 1.2 2.5 * * 3.1 * * 1.6 * 3.91 * 7.6	Dry matter (d.m.)	0/2	82.40	84 00
*Percentage of organic matter % 3.1 2.1 *Total nitrogen g/kg d.m. 1.7 1.1 *Total nitrogen g/kg d.m. 1.7 1.1 *Base g/kg d.m. 1.7 1.1 *Base g/kg d.m. 1.7 1.1 *Base g/kg d.m. 1.7 1.1 *Total nitrogen g/kg d.m. 1.7 1.1 *Base g/kg d.m. 2.2 1.8 *Base g/kg d.m. 2.2 1.8 *Base g/kg d.m. 1.7 1.1 *Base g/kg d.m. 2.2 1.8 *Base g/kg d.m. 2.2 1.1 *Base g/kg d.m. 2.1 1.1 *Base g/kg d.m. 2.1 1.1 *Base g/kg d.m. 2.1 1.1	*nH ovtraction with CaCla	-		
*Total nitrogen g/kg d.m. 1.7 1.1 *Total nitrogen g/kg d.m. 1.7 1.1 *Total nitrogen mg P ₂ O ₅ / 100 g 3.0 2.7 *Total nitrosphere mg P ₂ O ₅ / 100 g 3.0 2.7 *Total nitrosphere mg P ₂ O ₅ / 100 g 3.0 2.7 *Total nitrosphere mg P ₂ O ₅ / 100 g 3.0 2.7 *Graininess of the soll (texture) - Clay (< 2 µm) % 13.0 12.2 - Fine silt ((20–20) µm) % 21.8 22.3 - Coarse silt ((20–200) µm) % 17.2 18.2 - Fine sand ((50–200) µm) % 12.6 16.3 - Texture class – L L *Cation exchange capacity (CEC) - Measurable Mg mmol+/100 g 32.50 32.35 - Measurable Mg mmol+/100 g 0.28 0.17 - Measurable Mg mmol+/100 g 0.28 0.17 - Measurable K mmol+/100 g 0.28 0.17 - Measurable Na mmol+/100 g 0.28 0.17 - Measurable Na mmol+/100 g 34.29 33.91 - Cation exchange capacity (T) mmol+/100 g 35.29 34.16 - Base cations share (V) % 97.2 99.3 *Buk density g/dm ³ 890 990 *Electrical conductivity mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 32.8 36.3 Chrome mg/kg d.m. 32.8 36.3 Chrome mg/kg d.m. 39.4 36.1 *Meybdenum mg/kg d.m. 19 <10.0 Arsenic mg/kg d.m. 29.9 83.6 Chrome mg/kg d.m. 39.4 36.1 *Mybdenum mg/kg d.m. 19 <10.0 Arsenic mg/kg d.m. 29.2 307 *Volatile aromatic hydrocarbons (BTX) mg/kg d.m. <0.010 <0.0210 *PODY/DDD/DDE mg/kg d.m. <0.010 <0.0210 *Dot/DDD/DDE mg/kg d.m. <0.0210 <0.0210 *Dot/DDD/DDE mg/kg d.m. <0.010 <0.0210 *Dot/DDD/DDE mg/kg d.m. <0.010 <0.0210				
*Plant-available phosphorus mg P205 / 100 g 3.0 2.7 *Plant-available phosphorus mg K20 / 100 g 15 7.3 *Foraininess of the soil (texture) - - - - Clay (< 2 µm)		a/ka.d.m		
*Plant-available potassium mg K20./ 100 g 15 7.3 *Graininess of the soil (texture) - Clay (< 2 µm) % 13.0 12.2 - Fine silt ((2-20) µm) % 21.8 22.3 - Coarse silt ((20-50) µm) % 35.4 31.0 - Coarse sand ((200-2000) µm) % 12.6 16.3 - Texture class – L L L *Cation exchange capacity (CEC) - Measurable Ca mmol+/100 g 32.50 32.35 - Measurable Ca mmol+/100 g 1.48 1.36 - Measurable Ca mmol+/100 g 0.28 0.17 - Measurable K mmol+/100 g 0.03 0.03 - Total exchange capacity (T) mmol+/100 g 1.00 0.25 - Sum of base cations (S) mmol+/100 g 34.29 33.91 - Cation exchange capacity (T) mmol+/100 g 35.29 34.16 - Base cations share (V) % 97.2 99.3 *Buik density g/dm ³ 890 990 *Electrical conductivity mS/m 10.9 9.5 *Cadmium mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 32.8 36.3 Zinc mg/kg d.m. 39.4 36.1 Zinc mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 32.8 36.3 Zinc mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 32.8 36.3 Zinc mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 32.8 36.3 Zinc mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 32.8 36.3 Zinc mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 32.8 36.3 Zinc mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 30.4 *Mercury mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 30.4 *Mercury mg/kg d.m. 21.7 10.0 Arsenic mg/kg d.m. 21.7 10.0 Arsenic mg/kg d.m. 21.7 10.0 *Dot /DDD/DDE mg/kg d.m. 20.00 *DOt /DDD/DDE mg/kg d.m. 20.00 *DOt /DDD/DDE mg/kg d.m. 20.00 *DOT /DDD/DDE mg/kg d.m. 20.010 *DOT /DDD/DDE mg/kg d.m. 20.010 *DOT /DDD/DDE mg/kg d.m. 20.010 *DOT /DDD/DDE mg/kg d.m. 20.010 *DT/DDD/DDE mg/kg d.m. 20.0100 *DT/DDD/DDE mg/kg d.m. 20.0100 *DT/DDD/DDE mg/kg d.m. 20.0100 *DT/DDD/DDE mg/kg d.m. 20.0100 *DT/DDD/DDE			····· ^{1./}	
*Graininess of the soil (texture) - Clay (< 2 µm) % 13.0 12.2 - Fine silt ((2–20) µm) % 21.8 22.3 - Coarse silt ((20–50) µm) % 17.2 18.2 - Fine sand ((50–200) µm) % 35.4 31.0 - Coarse sand ((200–2000) µm) % 12.6 16.3 - Texture class – L L L *Cation exchange capacity (CEC) - Measurable Ca mmol+/100 g 32.50 32.35 - Measurable K mmol+/100 g 0.28 0.17 - Measurable K mmol+/100 g 0.28 0.17 - Measurable Na mmol+/100 g 0.28 0.17 - Measurable Na mmol+/100 g 0.28 0.17 - Measurable Na mmol+/100 g 1.48 - Sum of base cations (S) mmol+/100 g 34.29 33.91 - Cation exchange capacity (T) mmol+/100 g 35.29 34.16 - Base cations share (V) % 97.2 99.3 *Bulk density g/dm ³ 890 990 *Electrical conductivity m5/m 10.9 9.5 *Cadmium mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 32.8 36.3 Zinc mg/kg d.m. 32.8 36.3 Zinc mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 1.9 (.103 - Arsenic mg/kg d.m. 29.9 33.6 Chrome mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 20.103 0.277 Cobalt mg/kg d.m. 292 307 *Volatile aromatic hydrocarbons (BTX) mg/kg d.m. 40.090 <0.090 *Polycyclic aromatic hydrocarbons (BTX) mg/kg d.m. 40.160 <0.160 *PCB mg/kg d.m. 40.160 <0.0100 *Drins mg/kg d.m. 40.010 <0.010 *Drins mg/kg d.m. 40.0100 <0.010			<u> </u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		111g N2O / 100 g		/.5
- Fine silt ((2-20) µm) % 12.8 22.3 - Coarse silt ((20-50) µm) % 17.2 18.2 - Fine sand ((50-200) µm) % 35.4 31.0 - Coarse sand ((20-2000) µm) % 12.6 16.3 - Texture class - L L * Cation exchange capacity (CEC) - - L - Measurable Ca mmol+/100 g 1.48 1.36 - Measurable K mmol+/100 g 0.28 0.17 - Measurable Na mmol+/100 g 0.03 0.03 - Total exchange capacity (T) mmol+/100 g 34.29 33.91 - Cation exchange capacity (T) mmol+/100 g 35.29 34.16 - Base cations (S) mmol+/100 g 35.29 34.16 - Base cations share (V) % 97.2 99.3 * Bulk density g/dm ³ 890 990 * Electrical conductivity mS/m 0.220 0.248 Copper mg/kg d.m. 25.1 23.5 Lead				
- Coarse silt ((20-50) μm) % 17.2 18.2 - Fine sand ((50-200) μm) % 35.4 31.0 - Coarse sand ((200-2000) μm) % 12.6 16.3 - Texture class – L L *Cation exchange capacity (CEC) – L L *Measurable Ca mmol+/100 g 32.50 32.35 - Measurable Mg mmol+/100 g 0.28 0.17 - Measurable Na mmol+/100 g 0.03 0.03 - Total exchangeable acidity mmol+/100 g 1.00 0.25 - Sum of base cations (S) mmol+/100 g 35.29 34.16 - Base cations share (V) % 97.2 99.3 *Buk density g/dm ³ 890 990 *Electrical conductivity ms/m 10.9 9.5 *Cadmium mg/kg d.m. 0.220 0.248 Copper mg/kg d.m. 32.8 36.3 Cinc mg/kg d.m. 32.4 36.1 *Base cations share (V) % </td <td></td> <td>%</td> <td>13.0</td> <td>12.2</td>		%	13.0	12.2
- Fine sand ((50-200) μm) % 35.4 31.0 - Coarse sand ((200-2000) μm) % 12.6 16.3 - Texture class - L L *Cation exchange capacity (CEC) - L L - Measurable Ca mmol+/100 g 32.50 32.35 - Measurable Mg mmol+/100 g 0.28 0.17 - Measurable Na mmol+/100 g 0.03 0.03 - Total exchange cable acidity mmol+/100 g 1.00 0.25 - Sum of base cations (S) mmol+/100 g 35.29 34.16 - Base cations share (V) % 97.2 99.3 * Bulk density g/dm ³ 890 990 * Electrical conductivity mS/m 10.9 9.5 * Cadmium mg/kg d.m. 22.51 23.5 Lead mg/kg d.m. 32.8 36.3 Copper mg/kg d.m. 32.4 36.1 * Total exchange capacity (T) mg/kg d.m. 29.9 83.6 Chrome mg		%	21.8	22.3
- Coarse sand ((200–2000) μm) % 12.6 16.3 - Texture class - L L *Cation exchange capacity (CEC) - L L - Measurable Ca mmol+/100 g 32.50 32.35 - Measurable Mg mmol+/100 g 1.48 1.36 - Measurable K mmol+/100 g 0.28 0.17 - Measurable Na mmol+/100 g 0.03 0.03 - Total exchangeable acidity mmol+/100 g 34.29 33.91 - Cation exchange capacity (T) mmol+/100 g 35.29 34.16 - Base cations (S) mmol+/100 g 35.29 34.16 - Base cations share (V) % 97.2 99.3 *Bulk density g/dm³ 890 990 *Electrical conductivity mg/kg d.m. 25.1 23.5 Ead mg/kg d.m. 25.1 23.5 Lead mg/kg d.m. 39.4 36.3 Zinc mg/kg d.m. 18.9 16.3 Molybdenum mg/kg d.	- Coarse silt ((20–50) μm)	%		
- Texture class - L L *Cation exchange capacity (CEC) - Measurable Ca mmol+/100 g 32.50 32.35 - Measurable Ca mmol+/100 g 1.48 1.36 - Measurable Mg mmol+/100 g 0.28 0.17 - Measurable Na mmol+/100 g 0.03 0.03 - Total exchangeable acidity mmol+/100 g 34.29 33.91 - Cation exchange capacity (T) mmol+/100 g 35.29 34.16 - Base cations (S) mmol+/100 g 35.29 34.16 - Base cations share (V) % 97.2 99.3 *Bulk density g/dm ³ 890 990 *Electrical conductivity mS/m 10.9 9.5 *Cadmium mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 25.1 23.5 Lead mg/kg d.m. 32.8 36.3 Zinc mg/kg d.m. 39.9 65.1 *Mercury mg/kg d.m. 1.9 1.0	- Fine sand ((50–200) μm)	%		31.0
*Cation exchange capacity (CEC) - Measurable Ca mmol+/100 g 32.50 32.35 - Measurable Mg mmol+/100 g 1.48 1.36 - Measurable K mmol+/100 g 0.28 0.17 - Measurable Na mmol+/100 g 0.03 0.03 - Total exchangeable acidity mmol+/100 g 34.29 33.91 - Cation exchange capacity (T) mmol+/100 g 35.29 34.16 - Base cations share (V) % 97.2 99.3 *Bulk density g/dm ³ 890 990 *Electrical conductivity ms/m 10.9 9.5 *Cadmium mg/kg d.m. 0.220 0.248 Copper mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 25.1 23.5 Lead mg/kg d.m. 32.8 36.3 Zinc mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 1.9 43.6 Chrome mg/kg d.m. 1.9 43.6 Molybdenum mg/kg d.m. 292 307 *Volatile aromatic hydrocarbons (BTX) mg/kg d.m. 292 307 *Volatile aromatic hydrocarbons (BTX) mg/kg d.m. 20.100 <0.0210 *PDity Calona mg/kg d.m. 20.100 <0.0210 *POlycyclic aromatic hydrocarbons (PAH) mg/kg d.m. <0.000 <0.0010 *PDity DDI/DDE mg/kg d.m. <0.010 <0.010	- Coarse sand ((200–2000) µm)	%	12.6	16.3
- Measurable Ca mmol+/100 g 32.50 32.35 - Measurable Mg mmol+/100 g 1.48 1.36 - Measurable K mmol+/100 g 0.28 0.17 - Measurable Na mmol+/100 g 0.03 0.03 - Total exchangeable acidity mmol+/100 g 1.00 0.25 - Sum of base cations (S) mmol+/100 g 35.29 34.16 - Base cations share (V) % 97.2 99.3 * Bulk density g/dm³ 890 990 * Electrical conductivity mS/m 10.9 9.5 * Cadmium mg/kg d.m. 0.220 0.248 Copper mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 32.8 36.3 Zinc mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 19.9 41.0 Arsenic mg/kg d.m. 19.4 36.1 *Mercury mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 1.9			L	L
- Measurable Mg mmol+/100 g 1.48 1.36 - Measurable K mmol+/100 g 0.28 0.17 - Measurable Na mmol+/100 g 0.03 0.03 - Total exchangeable acidity mmol+/100 g 1.00 0.25 - Sum of base cations (S) mmol+/100 g 34.29 33.91 - Cation exchange capacity (T) mmol+/100 g 35.29 34.16 - Base cations share (V) % 97.2 99.3 * Bulk density g/dm³ 890 990 * Electrical conductivity mS/m 10.9 9.5 * Cadmium mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 21.7 19.5 Lead mg/kg d.m. 32.8 36.3 Zinc mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 18.9 16.3 Molybdenum mg/kg d.m. 1.9 <1.0	*Cation exchange capacity (CEC)			
- Measurable Mg mmol+/100 g 1.48 1.36 - Measurable K mmol+/100 g 0.28 0.17 - Measurable Na mmol+/100 g 0.03 0.03 - Total exchangeable acidity mmol+/100 g 1.00 0.25 - Sum of base cations (S) mmol+/100 g 34.29 33.91 - Cation exchange capacity (T) mmol+/100 g 35.29 34.16 - Base cations share (V) % 97.2 99.3 *Bulk density g/dm³ 890 990 *Electrical conductivity mS/m 10.9 9.5 *Cadmium mg/kg d.m. 0.220 0.248 Copper mg/kg d.m. 25.1 23.5 Lead mg/kg d.m. 39.4 36.1 Zinc mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 1.9 <1.0	- Measurable Ca	mmol + /100 a	32 50	32 35
- Measurable K mmol+/100 g 0.28 0.17 - Measurable Na mmol+/100 g 0.03 0.03 - Total exchangeable acidity mmol+/100 g 1.00 0.25 - Sum of base cations (S) mmol+/100 g 34.29 33.91 - Cation exchange capacity (T) mmol+/100 g 35.29 34.16 - Base cations share (V) % 97.2 99.3 *Bulk density g/dm³ 890 990 *Electrical conductivity mS/m 10.9 9.5 *Cadmium mg/kg d.m. 0.220 0.248 Copper mg/kg d.m. 25.1 23.5 Lead mg/kg d.m. 25.1 23.5 Lead mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 1.9 10.3 Chrome mg/kg d.m. 1.9 <1.0	- Measurable Mg	. , 5		
- Measurable Na mmol+/100 g 0.03 0.03 - Total exchangeable acidity mmol+/100 g 1.00 0.25 - Sum of base cations (S) mmol+/100 g 34.29 33.91 - Cation exchange capacity (T) mmol+/100 g 35.29 34.16 - Base cations share (V) % 97.2 99.3 *Bulk density g/dm ³ 890 990 *Electrical conductivity mS/m 10.9 9.5 *Cadmium mg/kg d.m. 0.220 0.248 Copper mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 32.8 36.3 Zinc mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 1.9 <1.0	5			
- Total exchangeable acidity mmol+/100 g 1.00 0.25 - Sum of base cations (S) mmol+/100 g 34.29 33.91 - Cation exchange capacity (T) mmol+/100 g 35.29 34.16 - Base cations share (V) % 97.2 99.3 *Bulk density g/dm ³ 890 990 *Electrical conductivity mS/m 10.9 9.5 *Cadmium mg/kg d.m. 0.220 0.248 Copper mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 25.1 23.5 Lead mg/kg d.m. 32.8 36.3 Zinc mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 1.9 41.0 Cobalt mg/kg d.m. 1.9 41.0 Arsenic mg/kg d.m. 292 307 *Volatile aromatic hydrocarbons (BTX) mg/kg d.m. 292 307 *Volatile aromatic hydrocarbons (PAH) mg/kg d.m. 40.0210 <0.0210				
- Sum of base cations (S) mmol+/100 g 34.29 33.91 - Cation exchange capacity (T) mmol+/100 g 35.29 34.16 - Base cations share (V) % 97.2 99.3 *Bulk density g/dm³ 890 990 *Electrical conductivity mS/m 10.9 9.5 *Cadmium mg/kg d.m. 0.220 0.248 Copper mg/kg d.m. 25.1 23.5 Lead mg/kg d.m. 25.1 23.5 Lead mg/kg d.m. 32.8 36.3 Zinc mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 1.9 41.0 Arsenic mg/kg d.m. 1.9 41.0 Arsenic mg/kg d.m. 2.92 307 *Volatile aromatic hydrocarbons (BTX) mg/kg d.m. 2.92 307 *Volatile aromatic hydrocarbons (PAH) mg/kg d.m. <0.0210		, 5		
- Cation exchange capacity (T) mmol+/100 g 35.29 34.16 - Base cations share (V) % 97.2 99.3 *Bulk density g/dm³ 890 990 *Electrical conductivity mS/m 10.9 9.5 *Cadmium mg/kg d.m. 0.220 0.248 Copper mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 25.1 23.5 Lead mg/kg d.m. 32.8 36.3 Zinc mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 0.103 0.277 Cobalt mg/kg d.m. 1.9 <1.0				
Base cations share (V) % 97.2 99.3 *Bulk density g/dm³ 890 990 *Electrical conductivity mS/m 10.9 9.5 *Cadmium mg/kg d.m. 0.220 0.248 Copper mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 25.1 23.5 Lead mg/kg d.m. 32.8 36.3 Zinc mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 0.103 0.277 Cobalt mg/kg d.m. 1.9 16.3 Molybdenum mg/kg d.m. 1.9 16.3 Molybdenum mg/kg d.m. 292 307 *Volatile aromatic hydrocarbons (BTX) mg/kg d.m. 292 307 *Volatile aromatic hydrocarbons (PAH) mg/kg d.m. <0.0100		, 5		
*Bulk density g/dm³ 890 990 *Electrical conductivity mS/m 10.9 9.5 *Cadmium mg/kg d.m. 0.220 0.248 Copper mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 25.1 23.5 Lead mg/kg d.m. 32.8 36.3 Zinc mg/kg d.m. 92.9 83.6 Chrome mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 0.103 0.277 Cobalt mg/kg d.m. 1.9 16.3 Molybdenum mg/kg d.m. 1.9 <1.0				
*Electrical conductivity mS/m 10.9 9.5 *Cadmium mg/kg d.m. 0.220 0.248 Copper mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 25.1 23.5 Lead mg/kg d.m. 32.8 36.3 Zinc mg/kg d.m. 92.9 83.6 Chrome mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 0.103 0.277 Cobalt mg/kg d.m. 18.9 16.3 Molybdenum mg/kg d.m. 1.9 <1.0				990
*Cadmium mg/kg d.m. 0.220 0.248 Copper mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 25.1 23.5 Lead mg/kg d.m. 32.8 36.3 Zinc mg/kg d.m. 92.9 83.6 Chrome mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 0.103 0.277 Cobalt mg/kg d.m. 18.9 16.3 Molybdenum mg/kg d.m. 1.9 <1.0				
Copper mg/kg d.m. 21.7 19.5 Nickel mg/kg d.m. 25.1 23.5 Lead mg/kg d.m. 32.8 36.3 Zinc mg/kg d.m. 92.9 83.6 Chrome mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 0.103 0.277 Cobalt mg/kg d.m. 18.9 16.3 Molybdenum mg/kg d.m. 1.9 <1.0				
Nickel mg/kg d.m. 25.1 23.5 Lead mg/kg d.m. 32.8 36.3 Zinc mg/kg d.m. 92.9 83.6 Chrome mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 0.103 0.277 Cobalt mg/kg d.m. 18.9 16.3 Molybdenum mg/kg d.m. 1.9 <1.0				
Lead mg/kg d.m. 32.8 36.3 Zinc mg/kg d.m. 92.9 83.6 Chrome mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 0.103 0.277 Cobalt mg/kg d.m. 18.9 16.3 Molybdenum mg/kg d.m. 1.9 <1.0				
Zinc mg/kg d.m. 92.9 83.6 Chrome mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 0.103 0.277 Cobalt mg/kg d.m. 18.9 16.3 Molybdenum mg/kg d.m. 1.9 <1.0				36.3
Chrome mg/kg d.m. 39.4 36.1 *Mercury mg/kg d.m. 0.103 0.277 Cobalt mg/kg d.m. 18.9 16.3 Molybdenum mg/kg d.m. 1.9 <1.0			92.0	
*Mercury mg/kg d.m. 0.103 0.277 Cobalt mg/kg d.m. 18.9 16.3 Molybdenum mg/kg d.m. 1.9 <1.0				
Cobalt mg/kg d.m. 18.9 16.3 Molybdenum mg/kg d.m. 1.9 <1.0				
Molybdenum mg/kg d.m. 1.9 <1.0 Arsenic mg/kg d.m. 8.0 7.6 Total fluorides mg/kg d.m. 292 307 *Volatile aromatic hydrocarbons (BTX) mg/kg d.m. <0.090				
Arsenic mg/kg d.m. 8.0 7.6 Total fluorides mg/kg d.m. 292 307 *Volatile aromatic hydrocarbons (BTX) mg/kg d.m. <0.090				
Total fluorides mg/kg d.m. 292 307 *Volatile aromatic hydrocarbons (BTX) mg/kg d.m. <0.090				
*Volatile aromatic hydrocarbons (BTX) mg/kg d.m. <0.090			20.0	
*Polycyclic aromatic hydrocarbons (PAH) mg/kg d.m. <0.160				
*PCB mg/kg d.m. <0.0210 <0.0210 *DDT/DDD/DDE mg/kg d.m. <0.060				
*DDT/DDD/DDE mg/kg d.m. <0.060 <0.060 *Drins mg/kg d.m. <0.010				
*Drins mg/kg d.m. <0.010 <0.010 *HCH compounds mg/kg d.m. <0.010				
*HCH compounds mg/kg d.m. <0.010 <0.010 *Atrazine mg/kg d.m. <0.0100 <0.0100				
*Atrazine mg/kg d.m. <0.0100 <0.0100				
*Simazine mg/kg d.m. <0.0100 <0.0100				
*Total hydrocarbons (mineral oils) C10-C40 mg/kg d.m. 17.1 12.3	* I otal hydrocarbons (mineral oils) C10-C40	mg/kg d.m.	17.1	12.3

* Measurements performed by the

subcontractor.

n.i. = not identified.

L – Loam

Results of the pedological and chemical analyses of soil samples taken as part of

ample label		TLANEK-2 0-5	TLANEK-2 5-20
ample no.		2020/81192	2020/81193
bil layer		(0–5) cm	(5–20) cm
ampling date	_	22 June 2020	22 June 2020
arameter	Unit		
ASIC PEDOLOGICAL PARAMETERS	5		
ry matter (d.m.)	%	83.00	84.50
pH extraction with CaCl ₂	_	7.6	7.6
Percentage of organic matter	%	3.8	2.2
Total nitrogen	g/kg d.m.	2.3	1.5
Plant-available phosphorus	mg P ₂ O ₅ / 100 g	3.6	2.4
Plant-available potassium	mg K ₂ O / 100 g	18	8.2
Graininess of the soil (texture)			
- Clay (< 2 μm)	%	14.1	14.4
- Fine silt ((2–20) μm)	%	29.2	30.8
- Coarse silt ((20–50) μm)	%	19.8	21.3
- Fine sand ((50–200) µm)	%	25.0	26.4
- Coarse sand ((200–2000) μm)	%	11.9	7.2
- Texture class	-	L	SL
Cation exchange capacity (CEC)			
- Measurable Ca	mmol+/100 g	34.18	34.68
- Measurable Mg	mmol+/100 g	1.76	1.51
- Measurable K	mmol+/100 g	0.37	0.18
- Measurable Na	mmol+/100 g	0.03	0.04
- Total exchangeable acidity	mmol+/100 g	0.75	0.50
- Sum of base cations (S)	mmol+/100 g	36.34	36.41
- Cation exchange capacity (T)	mmol+/100 g	37.09	36.91
- Base cations share (V) Bulk density	% g/dm ³	98.0 880	98.6
Electrical conductivity		13.9	<u>990</u> 11.0
Cadmium	Ms/m mg/kg d.m.	0.202	0.183
opper	mg/kg d.m.	24.8	24.1
ickel	mg/kg d.m.	26.3	28.7
ead	mg/kg d.m.	30.5	31.3
inc	mg/kg d.m.	86.8	81.3
hrome	mg/kg d.m.	42.4	46.3
Mercury	mg/kg d.m.	0.094	0.108
obalt	mg/kg d.m.	12.9	17.9
olybdenum	mg/kg d.m.		<1.0
rsenic	mg/kg d.m.	1.1 8.5	9.4
otal fluorides	mg/kg d.m.	271	354
Volatile aromatic hydrocarbons (BTX)	mg/kg d.m.	<0.090	<0.090
Polycyclic aromatic hydrocarbons	mg/kg d.m.	0.181	0.161
РАН)			
РСВ	mg/kg d.m.	<0.0210	<0.0210
DDT/DDD/DDE	mg/kg d.m.	<0.060	<0.060
Drins	mg/kg d.m.	<0.010	<0.010
HCH compounds	mg/kg d.m.	<0.010	<0.010
Atrazine	mg/kg d.m.	<0.0100	<0.0100
Simazine	mg/kg d.m.	<0.0100	<0.0100
Total hydrocarbons (mineral oils) C10-	ma/ka d m		

subcontractor.

Table 11:

n.i. = not identified. L – Loam, SL – Silty loam

TALUM INŠTITUT d.o.o. • document no.: 360/2020 • date of document: 29 July 2020

Sample label		TLANEK-3 0-5	TLANEK-3 5-20
Sample no.		2020/81195	2020/81196
Soil layer		(0-5) cm	(5–20) cm
Sampling date		22 June 2020	22 June 2020
Parameter	Unit		
BASIC PEDOLOGICAL PARAMETERS	5		
Dry matter (d.m.)	%	84.00	85.50
*Ph extraction with CaCl ₂	_	7.7	7.7
*Percentage of organic matter	%	3.2	2.9
*Total nitrogen	g/kg d.m.	1.5	1.2
*Plant-available phosphorus	g/ kg d.m. mg P₂O₅ / 100 g		2.2
		2.6 11	6.8
*Plant-available potassium *Graininess of the soil (texture)	mg K ₂ O / 100 g	11	0.0
- Clay (< 2 μm)	%	10.6	9.8
- Fine silt ((2–20) μm)	%	17.5	17.7
- Coarse silt ((20–50) μm)	%	16.3	14.4
- Fine sand ((50–200) μm)	%	41.1	33.4
- Coarse sand ((200–2000) μm)	%	14.6	24.7
- Texture class	_	SDL	SDL
Cation exchange capacity (CEC)			
- Measurable Ca	mmol+/100 g	33.69	32.56
- Measurable Mg	mmol+/100 g	1.38	1.26
- Measurable Mg	mmol+/100 g	0.21	0.15
- Measurable Na			
	mmol+/100 g	0.03	0.04
- Total exchangeable acidity	mmol+/100 g	0.50	0.05
- Sum of base cations (S)	mmol+/100 g	35.31	34.01
- Cation exchange capacity (T)	mmol+/100 g	35.81	34.06
- Base cations share (V)	%	98.6	99.9
Bulk density	g/dm ³	900	1,000
*Electrical conductivity	mS/m	10.0	9.5
*Cadmium	mg/kg d.m.	0.253	0.245
Copper	mg/kg d.m.	22.5	19.6
Nickel	mg/kg d.m.	22.5	19.1
ead	mg/kg d.m.	38.9	33.2
Zinc	mg/kg d.m.	94.5	85.2
Chrome	mg/kg d.m.	41.4	31.9
*Mercury	mg/kg d.m.	0.128	0.589
Cobalt	mg/kg d.m.	12.5	17.0
Molybdenum	mg/kg d.m.	<1.0	<1.0
Arsenic	mg/kg d.m.	7.6	6.6
otal fluorides	mg/kg d.m.	378	215
Volatile aromatic hydrocarbons (BTX)		<0.090	< 0.090
Polycyclic aromatic hydrocarbons		<0.090	<0.160
Polycyclic aronnatic hydrocarbons PAH)	mg/kg d.m.	<0.100	<0.100
PCB	mg/kg d.m.	<0.0210	<0.0210
DDT/DDD/DDE	mg/kg d.m.	<0.060	< 0.060
Drins	mg/kg d.m.	< 0.010	< 0.010
FICH compounds	mg/kg d.m.	< 0.010	< 0.010
^c Atrazine	mg/kg d.m.	<0.010	<0.010
Simazine	mg/kg d.m.		< 0.0100
		<0.0100	<0.0100
*Total hydrocarbons (mineral oils) C10-	mg/kg d.m.	23.4	36.9

Table 12:

Results of the pedological and chemical analyses of soil samples taken as part of truction at the

subcontractor.

n.i. = not identified. SDL – Sandy loam

TALUM INŠTITUT d.o.o. • document no.: 360/2020 • date of document: 29 July 2020

Table 13

Results of the pedological and chemical analyses of soil samples taken as part of the recording of soil status at the site of the planned SFDS construction at the TLANEK-4 sampling point.

Sample label		TLANEK-4 0-5	TLANEK-4 5-20
Sample no.		2020/81197	2020/81198
Soil layer		(0–5) cm	(5–20) cm
Sampling date		22 June 2020	22 June 2020
Parameter	Unit		
BASIC PEDOLOGICAL PARAMETERS	5		
Dry matter (d.m.)	%	02.20	96.00
*pH extraction with CaCl ₂	<u> </u>	82.30 7.6	86.00
Percentage of organic matter	<u>-</u>	4.4	<u>7.7</u> 2.7
*Total nitrogen	g/kg d.m.	2.4	1.3
*Plant-available phosphorus	mg P ₂ O ₅ / 100 g	2.6	1.5
*Plant-available potassium	mg K ₂ O / 100 g	18	7.3
*Graininess of the soil (texture)	11g 1/20 / 100 g		
- Clay (< 2 μm)	%	14.5	16.0
- Fine silt ((2–20) μm)	%	22.2	21.0
- Coarse silt ((20–50) μm)	%	12.7	13.7
- Fine sand ((50–200) μm)	%	21.7	20.8
- Coarse sand ((200–2000) μm)	%	28.9	28.5
- Texture class		L	L
*Cation exchange capacity (CEC)			
- Measurable Ca	mmol+/100 g	34.27	34.07
- Measurable Mg	mmol+/100 g	1.74	1.52
- Measurable K	mmol+/100 g	0.36	0.18
- Measurable Na	mmol+/100 g	0.04	0.03
 Total exchangeable acidity 	mmol+/100 g	1.00	0.50
 Sum of base cations (S) 	mmol+/100 g	36.41	35.80
 Cation exchange capacity (T) 	mmol+/100 g	37.41	36.30
- Base cations share (V)	<u>%</u>	97.3	98.6
*Bulk density	g/dm ³	910	1,030
*Electrical conductivity	mS/m	15.0	11.2
*Cadmium	mg/kg d.m.	0.204	0.178
Copper	mg/kg d.m.	34.8	25.7
Nickel	mg/kg d.m.	22.6	22.2
_ead	mg/kg d.m.	31.0	31.5
Zinc	mg/kg d.m.	88.9	83.2
Chrome	mg/kg d.m.	42.6	41.2
*Mercury	mg/kg d.m.	0.180	0.113
Cobalt	mg/kg d.m.	20.9	16.5
Molybdenum	mg/kg d.m.	<1.0	<1.0
Arsenic	mg/kg d.m.	6.0	6.8
Total fluorides	mg/kg d.m.	260	191
*Volatile aromatic hydrocarbons (BTX)	mg/kg d.m.	< 0.090	< 0.090
*Polycyclic aromatic hydrocarbons	mg/kg d.m.	<0.160	0.224
PAH)	mag/leg al	-0.0210	40.0010
	mg/kg d.m.	<0.0210	< 0.0210
*DDT/DDD/DDE	mg/kg d.m.	< 0.060	< 0.060
*Drins	mg/kg d.m.	< 0.010	< 0.010
*HCH compounds	mg/kg d.m.	< 0.010	< 0.010
*Atrazine	mg/kg d.m.	<0.0100	< 0.0100
*Simazine	mg/kg d.m.	<0.0100	< 0.0100
*Total hydrocarbons (mineral oils) C10-	mg/kg d.m.		

*Measurements performed by the

subcontractor.

n.i. = not identified.

L – Loam

4.6 Status of soil sampling points at the site

We calculated the zero state of an individual parameter using the following mathematical formula, which includes the heterogeneity of the sampling point and the measurement uncertainty of the analytical method:

$$y_{j,k} = \overline{x_{j,k}} \pm \left(SD + \frac{U_j \cdot x_{j,k}}{100}\right) \tag{1}$$

where:

$$\overline{x_{j,k}} = \frac{x_{A,j,k} + x_{B,j,k} + x_{C,j,k} + x_{D,j,k}}{4}$$
(2)

$$SD = \frac{\sqrt{\frac{(x_{A,j,k} - \overline{x_{j,k}})^2 + (x_{B,j,k} - \overline{x_{j,k}})^2 + (x_{C,j,k} - \overline{x_{j,k}})^2 + (x_{D,j,k} - \overline{x_{j,k}})^2}{3}}{\overline{x_{j,k}}}$$
(3)

Meaning of symbols:

- $y_{j,k}$ Zero state of parameter *j* in soil layer *k*;
- $\overline{x}_{j,\overline{k}}$ Average value of parameter *j* in the zero state in soil layer *k*;
- $SD_{j,k}$ Standard deviation for parameter *j* in soil layer *k*;
- $x_{A,j,k}$ Measured value of the parameter *j* in the zero state in segment A of the sampling point in soil layer *k*;
- $x_{B,j,k}$ Measured value of parameter j in the zero state in segment B of the sampling point in soil layer k;
- $x_{C_{j,k}}$ Measured value of the parameter *j* in the zero state in segment C of the sampling point in soil layer *k*;
- $x_{D,j,k}$ Measured value of the parameter *j* in the zero state in segment D of the sampling point in soil layer *k*;
- U_j Measurement uncertainty of the analytical method for parameter j;
- LOQ_j Limit of quantification for parameter *j*;
- k soil layer surface layer: depth (0-5) cm, sub-surface layer: depth (5-20) cm.

Where the measured value of the parameter in the zero state in an individual segment of the sampling point was below the limit of quantification, we assumed, when calculating the zero state of the parameter using equation (1), that the measured value of the parameter was equal to half the limit of quantification of the parameter.

The zero state of parameters in the surface (depth: (0–5) cm) and sub-surface (depth: (5–20) cm) soil layers at the site of the planned SFDS construction is given in Table 14 below. The soil status is shown as the average value of an individual parameter with the given variability. The organic parameters (volatile aromatic hydrocarbons (BTX), PCB, DDT/DDD/DDE, drins, HCH compounds, atrazine and simazine) are below the limit of quantification (LOQ) in all samples, with the exception of PAH, which were slightly above the LOQ in three of the eight samples. The variability of the parameters in the soil at the site under investigation is low and does not display large deviations.

Soil layer		(0–5) cm	(5–20) cm
Sampling date		22 June 2020	22 June 2020
Parameter	Unit		
BASIC PEDOLOGICAL PARAMETERS			
Dry matter (d.m.)	%	82.90 ± 0.9	85.2 ± 0.8
*pH extraction with CaCl ₂	-	7.6 ± 0.4	7.7 ± 0.5
	- 0/		
*Percentage of organic matter	%	3.6 ± 1.1	2.5 ± 0.8
	g/kg d.m.	2.0 ± 0.5	1.3 ± 0.2
	mg P ₂ O ₅ / 100 g	3.0 ± 0.6	2.2 ± 0.6
*Plant-available potassium	mg K ₂ O / 100 g	15.5 ± 4.1	7.4 ± 1.0
*Graininess of the soil (texture)			
- Clay (< 2 μm)	%	13.1 ± 3.8	13.1 ± 4.7
- Fine silt ((2–20) μm)	%	22.7 ± 6.8	23.0 ± 7.6
- Coarse silt ((20–50) μm)	%	16.5 ± 3.9	16.9 ± 4.5
- Fine sand ((50-200) μm)	%	30.8 ± 11.0	27.9 ± 7.6
- Coarse sand ((200-2000) μm)	%	17.0 ± 10.0	19.2 ± 11.5
- Texture class	-	-	-
*Cation exchange capacity (CEC)			
- Measurable Ca	mmol+/100 g	33.66 ± 2.50	33.42 ± 2.81
- Measurable Mg	mmol+/100 g mmol+/100 g	1.59 ± 0.27	1.41 ± 0.20
- Measurable K	· -		0.17 ± 0.02
- Measurable Na	mmol+/100 g	0.31 ± 0.09	
- Total exchangeable acidity	mmol+/100 g	0.03 ± 0.008 0.81 ± 0.32	0.04 ± 0.009 0.33 ± 0.25
÷ ,	mmol+/100 g		
- Sum of base cations (S)	mmol+/100 g	35.59 ± 4.56	35.03 ± 4.77
- Cation exchange capacity (T)	mmol+/100 g %	36.40 ± 4.65	35.36 ± 5.00
- Base cations share (V)		97.8 ± 30.0	99.1 ± 30.4
*Bulk density	g/dm ³	895 ± 147	$1,003 \pm 169$
*Electrical conductivity	mS/m	12.5 ± 3.0	10.3 ± 1.4
*Cadmium	mg/kg d.m.	0.220 ± 0.1	0.214 ± 0.1
Copper	mg/kg d.m.	26.0 ± 16	22.2 ± 11.7
Nickel	mg/kg d.m.	24.1 ± 9.5	23.4 ± 11.4
Lead	mg/kg d.m.	33.3 ± 9.4	33.1 ± 7.8
Zinc	mg/kg d.m.	90.8 ± 28.0	83.3 ± 24.0
Chrome	mg/kg d.m.	41.5 ± 8.6	38.9 ± 12.9
*Mercury	mg/kg d.m.	0.13 ± 0.06	0.288 ± 0.27
Cobalt	mg/kg d.m.	16.3 ± 5.4	16.9 ± 1.9
Molybdenum	mg/kg d.m.	1.3 ± 0.9	<1.0 ± 0.0
Arsenic	mg/kg d.m.	7.5 ± 1.6	7.6 ± 1.8
Total fluorides	mg/kg d.m.	300 ± 114	267 ± 130
*Volatile aromatic hydrocarbons (BTX)	mg/kg d.m.	<0.030 ± 0.0	<0.030 ± 0.0
*Polycyclic aromatic hydrocarbons (PAH)	mg/kg d.m.	0.057 ± 0.1	0.176 ± 0.1
*PCB	mg/kg d.m.	<0.210 ± 0.0	<0.210 ± 0.0
*DDT/DDD/DDE	mg/kg d.m.	<0.060 ± 0.0	<0.210 ± 0.0
*Drins	mg/kg d.m.	<0.010 ± 0.0	<0.010 ± 0.0
*HCH compounds	mg/kg d.m.	<0.010 ± 0.0	<0.010 ± 0.0
*Atrazine	mg/kg d.m.	<0.0100 ± 0.0	<0.0100 ± 0.0
*Simazine	mg/kg d.m.	<0.0100 ± 0.0	<0.0100 ± 0.0
*Total hydrocarbons (mineral oils) C10-C40 *Measurements performed by the subcontra	mg/kg d.m.	21.1 ± 13.7	20.2 ± 18.3

Table 14: Zero state of the parameters in the surface and sub-surface soil layer samples taken as part	
of the recording of soil status at the site of the planned SFDS construction.	

*Measurements performed by the subcontractor.

4.7 Evaluation of soil pollution status

We evaluated the soil pollution status on the basis of a comparison between the measured values of individual parameters as part of measurements of the chemical status of soil at the sampling points with labels and the corresponding limit, alert and critical values as determined in the Decree on limit values, alert thresholds and critical immission values of dangerous substances in soil (Official Gazette of RS, Nos. 68/96, 41/04 [ZVO-1]) and the results of measurements **at the nearest national monitoring sampling point** (ROTS no. 13657, Spodnji Stari Grad, municipality of Krško).

In accordance with the **Decree on the criteria for determining the level of environmental pollution resulting from the contamination of soil with dangerous substances** (Official Gazette of RS, No. 7/19), we will classify the area into the **first** or **second level** of environmental pollution according to the limit, alert and critical values of dangerous substances under the Decree referred to in the previous sentence.

In accordance with the Decree on limit values, alert thresholds and critical immission values of dangerous substances in soil (Official Gazette of RS, Nos. 68/96, 41/04 [ZVO-1]):

- the **limit value** is the density of a particular dangerous substance in the soil that entails a load on the soil that guarantees the living conditions for plants and animals, and at which there is no deterioration in the quality of the groundwater or in soil fertility. At this value, the effects and impact on human health and on the environment are still acceptable;
- the alert threshold is the density of a particular dangerous substance in the soil that entails the likelihood of harmful effects or impact on human health or on the environment for certain types of soil use;
- the **critical value** is the density of a particular dangerous substance in the soil at which the contaminated soil is not suitable for the cultivation of plants intended for human or animal consumption or for the retention or filtration of water, because of the harmful effects or impact on human health or on the environment.

Table 15 shows that all the parameters investigated in accordance with the Decree on limit values, alert thresholds and critical immission values of dangerous substances in soil (Official Gazette of RS, Nos. 68/96, 41/04 [ZVO-1]) are below the limit value, which means that the density of an individual dangerous substance in soil is such that it does not reduce the quality of groundwater and soil. The environmental impact is acceptable. Similarly, the results of the parameters do not deviate significantly from the results of the measurements at the nearest national monitoring sampling point.

In accordance with the Decree on the criteria for determining the level of environmental pollution resulting from the contamination of soil with dangerous substances (Official Gazette of RS, No. 7/19), the area of soil under investigation belongs to the second level of environmental pollution because none of the values are equal to or exceed the alert value for dangerous substances.

Table 15: Presentation of the soil pollution status at the site of the planned SFDS construction in zero state – comparison of values of individual parameters with the corresponding limit, alert and critical values as determined in the Decree on limit values, alert thresholds and critical immission values of dangerous substances in soil (Official Gazette of RS, Nos. 68/96, 41/04 [ZVO-1]) and the results of measurements at the nearest national monitoring sampling point (ROTS) – sampling point no. 13657, Spodnji Stari Grad (Krško), the location of which is defined using the Gauss-Krüger coordinates GKX = 541000 and GKY = 88000.

Parameter	Unit	Soil status – sampling 22 June 2020		Limit value ¹	Alert threshold ¹	Critical value ¹	¹ ROTS 13657	
		(0-5) cm	(5–20) cm				(0–5) cm	(5–20) cm
*Cadmium	mg/kg d.m.	0.220 ± 0.1	0.214 ± 0.1	1	2	12	<0.5	<0.5
Copper	mg/kg d.m.	26.0 ± 16	22.2 ± 11.7	60	100	300	30.5	54
Nickel	mg/kg d.m.	24.1 ± 9.5	23.4 ± 11.4	50	70	210	25.9	24.5
Lead	mg/kg d.m.	33.3 ± 9.4	33.1 ± 7.8	85	100	530	43.5	41.5
Zinc	mg/kg d.m.	90.8 ± 28.0	83.3 ± 24.0	200	300	720	110	107
Chrome	mg/kg d.m.	41.5 ± 8.6	38.9 ± 12.9	100	150	380	43.1	43.8
*Mercury	mg/kg d.m.	0.13 ± 0.06	0.288 ± 0.27	0.8	2	10	0.2	/
Cobalt	mg/kg d.m.	16.3 ± 5.4	16.9 ± 1.9	20	50	240	10.6	9.8
Molybdenum	mg/kg d.m.	1.3 ± 0.9	<1.0 ± 0.0	10	40	200	l	/
Arsenic	mg/kg d.m.	7.5 ± 1.6	7.6 ± 1.8	20	30	55	10.2	/
Total fluorides	mg/kg d.m.	300 ± 114	267 ± 130	450	825	1,200	/	/
*Volatile aromatic hydrocarbons (BTX)	mg/kg d.m.			/	/	/	/	/
Benzene				0.05	0.5	1	/	/
Ethylbenzene		<0.030 ± 0.0	$< 0.030 \pm 0.0$	0.05	25	50	/	/
Toluene xylene				0.05 0.05	65 12.5	130 25	/	/
*Polycyclic aromatic hydrocarbons (PAH) mg/kg d.m.		0.057 ± 0.1	0.176 ± 0.1	0.05	20	40	!	/
		0.057 ± 0.1		¹ 0.2	0.6		l	/
*PCB *DDT/DDD/DDE	mg/kg d.m. mg/kg d.m.	<0.210 ± 0.0 <0.060 ± 0.0	<0.210 ± 0.0 <0.060 ± 0.0	0.2	2	<u>1</u> 4	/ <0.005	/
			$<0.080 \pm 0.0$ $<0.010 \pm 0.0$	0.1	2			/
*Drins	mg/kg d.m.	<0.010 ± 0.0			2	4	< 0.005	/
*HCH compounds	mg/kg d.m.	<0.010 ± 0.0	<0.010 ± 0.0	0.1	<u> </u>	4	< 0.002	/
*Atrazine	mg/kg d.m.	<0.0100 ± 0.0	<0.0100 ± 0.0	0.01	<u>ئ</u>	6	0.017	/
*Simazine	mg/kg d.m.	<0.0100 ± 0.0	<0.0100 ± 0.0	0.01	3	6	0.026	/
*Total hydrocarbons (mineral oils) C10-C40	mg/kg d.m.	21.1 ± 13.7	20.2 ± 18.3	50	2,500	5,000	/	/

*Measurements performed by the

subcontractor.

1 Decree on limit values, alert thresholds and critical immission values of dangerous substances in soil (Official Gazette of RS, Nos. 68/96, 41/04 [ZVO-1])

5 CONCLUDING ASSESSMENT

The soil in parcel no. 1197/44, cadastral municipality 1321 Leskovec, where Nuklearna elektrarna Krško d.o.o. plans to build an SFDS facility with an area of 3,312 m², was examined in accordance with the Rules on the operational monitoring of soil status (Official Gazette of RS, Nos. 66/17 and 4/18), including a detailed description and pollution testing. Following an evaluation of dangerous substance content pursuant to the Decree on limit values, alert thresholds and critical immission values of dangerous substances in soil (Official Gazette of RS, Nos. 68/96 and 41/04 [ZVO-1]), we find that the values of the relevant parameters do not exceed **limit immission values**, which means a level of soil pollution that **does not represent a deterioration** of the quality of groundwater and soil. In the case of the values obtained, the effects or impact on human health or the environment are **still acceptable**.

6 ANNEXES

Test report no. 2020/81190 (date of report: 24 July 2020, Talum Inštitut) Test report no. 2020/81191 (date of report: 24 July 2020, Talum Inštitut) Test report no. 2020/81192 (date of report: 24 July 2020, Talum Inštitut) Test report no. 2020/81193 (date of report: 24 July 2020, Talum Inštitut) Test report no. 2020/81195 (date of report: 24 July 2020, Talum Inštitut) Test report no. 2020/81196 (date of report: 24 July 2020, Talum Inštitut) Test report no. 2020/81196 (date of report: 24 July 2020, Talum Inštitut) Test report no. 2020/81197 (date of report: 24 July 2020, Talum Inštitut) Test report no. 2020/81198 (date of report: 24 July 2020, Talum Inštitut)

Test report no. 02727/2020 (date of report: 24 July 2020, Agricultural Institute of Slovenia) Test report no. 02728/2020 (date of report: 24 July 2020, Agricultural Institute of Slovenia) Test report no. 02729/2020 (date of report: 24 July 2020, Agricultural Institute of Slovenia) Test report no. 02730/2020 (date of report: 24 July 2020, Agricultural Institute of Slovenia) Test report no. 02731/2020 (date of report: 24 July 2020, Agricultural Institute of Slovenia) Test report no. 02732/2020 (date of report: 24 July 2020, Agricultural Institute of Slovenia) Test report no. 02732/2020 (date of report: 24 July 2020, Agricultural Institute of Slovenia) Test report no. 02733/2020 (date of report: 24 July 2020, Agricultural Institute of Slovenia) Test report no. 02733/2020 (date of report: 24 July 2020, Agricultural Institute of Slovenia) Test report no. 02733/2020 (date of report: 24 July 2020, Agricultural Institute of Slovenia)

Certificate of Analysis no. PR2063532 (date of report: 7 July 2020, ALSGlobal, ALS Czech Republic, s.r.o)

Term in English
USDA Texture Classification
Analysis number
Analysis for Nuklearna elektrarna Krško d.o.o.
INORGANIC PARAMETERS
Arsenic
Copper
Exchangeable Ca
Zinc
Testing date
Sampling date
Sample receipt date
Receipt date
Base cations share (V)
Director:
Unit
F - total
Fine silt (2 - 20 μm)
Fine sand (50 - 200 µm)
Fluorides - total
Clay
Coarse silt
Coarse sand
Sample group
L: loam
Internal method
Edition: 3
Calculation
Expressed as
Source
Exchangeable K
K ₂ O (available)
Cation exchange capacity (T)
Test location
Cobalt
Chrome
MSc.
Matrix
Measurement uncertainty
Sample location
Exchangeable Mg
Molibden
Exchangeable Na
At the address of the contractor
Task
Client
Nickel
Area
From 7.7.2020 to 24.7.2020
Responsible Analyst
Sampled by
Note: "The Annendix to the Test Report" is an
Note: "The Appendix to the Test Report" is an integral part of the "Test Report".

Izraz v slovenščini	Term in English
Opombe k vzorcu:	Sample notes:
Organska snov	Organic matter
Organski ogljik (C _{org})	Organic carbon (C _{org})
OSTALI PARAMETRI	OTHER PARAMETERS
Oznaka:	Label:
oznaka vzorca	Sample label
P_2O_5 (dostopni)	P ₂ O ₅ (available)
parameter	Parameter
pH v CaCl ₂	pH in CaCl ₂
Po DIN EN 10234-3.1; Rezultati se nanašajo	According to DIN EN 10234-3.1; The results
izključno na preiskan(e) vzorec(e). Rezultati se	refer exclusively to the sample (s) examined.
nanašajo na vzorčen vzorec. Razmnoževanje	The results refer to the sample. Reproduction of
poročila, razen v celoti, ni dovoljeno.	the report, except in full, is not permitted.
Podana negotovost je razširjena merilna	Measurement uncertainty is expressed as
negotovost, izračunana s faktorjem pokritja k,	expanded measurement uncertainty with
k=2, ki ustreza približno 95% stopnji zaupanja.	coverage factor $k=2$, representing approx. 95%
	confidence level.
PODATKI O VZORCU	SAMPLE DATA
POROČILO O PRESKUSU	TEST REPORT
Priloga k poročilu o preskusu	Appendix to the Test Report
Priloga: Poročila podizvajalca	Appendix: Subcontractor reports
Priprava vzorca	Sample preparation
Referenca	Reference
rezultat	Result
REZULTATI ANALIZE	ANALYSIS RESULTS
REZULTATI ANALIZE - nadaljevanje:	ANALYSIS RESULTS - continued
Rezultati označeni z # se nanašajo na	Results marked with # refer to a non-accredited
neakreditirano dejavnost	activity
serija	Series
Skupna izmenljiva kislost	Total exchangeable acidity
Skupni dušik (N)	Total Nitrogen (N)
Specifična električna prev.	Soil electrical conductivity
SPLOŠNI PODATKI	GENERAL DATA
standard	Standard
stanje vzorca	Sample status
Stran 1 od 2	Page 1 of 2
Suha snov pri 105 °C Svinec	Dry matter at 105 °C Lead
št.	No.
št. naročila št. poročila	Order No.
	Report No.
številka vzorca	Sample No.
univ. dipl. inž. kem. tehnol.	B.Sc. Chemical Technology
univ. dipl. kem.	B.Sc. Chemistry
Ustrezna	Suitable
Teksturni razred	Texture class
verzija 12	Version 12
Vodja laboratorija:	Head of the Laboratory
Vsota bazičnih kationov (S)	Sum of base cations (S)
Vzorci tal so bili pripravljeni v skladu s	Soil samples were prepared in accordance with
standardom SIST ISO 11464:2006, frakcija	the SIST ISO 11464: 2006 standard, the fraction
delcev večjih od 2 mm je bila odstranjena.	of particles larger than 2 mm was removed. The
Rezultati analize se nanašajo izključno na	results of the analysis relate exclusively to the

Izraz v slovenščini	Term in English
preskušane vzorce. Podani so v zračno suhem	samples tested. They are given for an air-dry
vzorcu, razen, kjer je pri enoti oznaka s.s., ki	sample, except where the unit is marked as s.s.,
pomeni v suhi snovi. Razmnoževanje tega	which means in dry matter. Reproduction of this
dokumenta ni dovoljeno, razen v celoti kot	document is not permitted except in its entirety
faksimile. Poročilo o preskusu je podano v	as a facsimile. The test report is given in a
poenostavljeni obliki. Vse dodatne informacije o	simplified form. Any additional information on
preskušanju so na voljo v laboratoriju.	testing is available in the laboratory.
Vzorec:	Sample:
Vzorec je bil razklopljen v zaprti posodi z	The sample was digested in a closed container
uporabo mikrovalov (standard ISO 12914).	using microwaves (ISO 12914 Standard).
Vzorec, posušen na 105 °C, smo zmešali s 500	The sample, dried at 105 ° C, was mixed with
ml vode, izvedli razklop v skladu s standardom	500 ml of water, digested according to SIST ISO
SIST ISO 10359-2 ter analizo skladnosti s	10359-2 and analysed for compliance with SIST
standardom SIST ISO 10359-1.	ISO 10359-1.
vzorec ustreza pogojem za sprejem	The sample meets the conditions for admission
začetek	Beginning
zaključek	Conclusion
Zemlja	Soil

št. poročila: 2020/81190/166650

Kidričevo, 24.7.2020

POROČILO O PRESKUSU

SPLOŠNI PODATKI

Analiza za Nuklearno elektrarno Krško d.o.o. naloga: NUKLEARNA ELEKTRARNA KRŠKO d.o.o. naročnik: Vrbina 12, 8270 Krško št. naročila: 510001187 3200873

PODATKI O VZORCU

matriks:	TLA	območje:	Krško
oznaka vzorca:	TLANEK-1 0-5 cm	mesto odvzema:	TLANEK-1
grupa vzorca:	-	odvzemnik:	Napast Viktor
serija:	-	datum odvzema:	23,06.2020
izvor:	-	datum prevzema:	
številka vzorca:	2020/81190	kraj izvedbe:	na naslovu izvajalca
stanje vzorca:	vzorec ustreza pogojem za sprejem		

REZULTATI ANALIZ

parameter	enota	izražen kot	standard	rezultat	merilna ‡ negotovost	začetek zaključek
ANORGANSKI PARAME	TRI					
Suha snov pri 105 °C	%		SIST ISO 11465:1996/Cor 1:2005	82.40	±1.78	29.6.2020 30.6.2020
Molibden	mg/kg s.s.	Мо	SIST EN ISO 17294-2:2017	1.9	±37.2 ‡	t 2.7.2020 6.7.2020
Arzen	mg/kg s.s.	As	SIST EN ISO 172 9 4-2:2017	8.0	±0.6 4	2.7.2020 6.7.2020
Baker	mg/kg s.s.	Cu	SIST EN ISO 17294-2:2017	21.7	±8.3 ‡	2.7.2020 6.7.2020
Cink	mg/kg s.s.	Zn	SIST EN ISO 17294-2:2017	92.9	±25.0 7	2.7.2020 6.7.2020
Krom	mg/kg s.s.	Cr	SIST EN ISO 17294-2:2017	39.4	±6.8 4	¢ 2.7.2020 6.7.2020
Nikelj	mg/kg s.s.	Ni	SIST EN ISO 17294-2:2017	25.1	±7.9	¢ 2.7.2020 6.7.2020
Svinec	mg/kg s.s .	Pb	SIST EN ISO 17294-2:2017	32.8	±5.4	¢ 2.7.2020 6.7.2020
Kobalt	mg/kg s.s.	Со	SIST EN ISO 17294-2:2017	18.9	±1.4 ;	2.7.2020 6.7.2020
Fluoridi - celotni	mg/kg s.s.		SIST ISO 10359-1:1996	292	±58 ;	# 2.7.2020 6.7.2020
OSTALI PARAMETRI						
Priprava vzorca			SIST ISO 11464: 2006	Ustrezna	;	¢ 26.6.2020 29.6.2020

Podana negotovost je razširjena merilna negotovost, izračunana s faktorjem pokritja k, k=2, ki ustreza približno 95% stopnji zaupanja.

št. poročila: 2020/81190/166650

Opomba: Sestavni del "Poročila o preskusu" je "Priloga k Poročilu o preskusu".

Vodja laboratorija:

Majda Rola, univ. dipl. inž. kem. tehnol.

Direktor:

edr. Marko Homšak Lice Uhyleydil

TALUM ∘ INŠTITUT d.o.o. KID RIČEV O

Po DIN EN 10204-3.1; Rezultati se nanašajo izključno na preiskan(e) vzorec(e). Rezultati se nanašajo na vzorčen vzorec. Razmnoževanje poročila, razen v celoti, ni dovoljeno.

standard

SIST ISO

17294-2:2017

Priloga k Poročilu o preskusu

Opombe k vzorcu:

Priloga: Poročila podizvajalca KIS Priloga: Poročila podizvajalca ALS

Opombe k parametru:

F-celotni

10359-1:1996 Vzorec, posušen na 105°C, smo zmešali s 500 ml vode, izvedli razklop v skladu s standardom SIST ISO 10359-2 ter analizo v skladu s standardom SIST ISO 10359-1. Ni Co Cu Cr Zn As Ph SIST EN ISO

Mo, Ni, Co, Cu, Cr, Zn, As, Pb

Vzorec je bil razklopljen v zaprti posodi z uporabo mikrovalov (standard ISO 12914).

Vodja laboratorija:

Majda Rola, univ. dipl. inž. kem. tehnol.

TALUM • INŠTITUT d.o.o. K I D R I Č E V O Direktor:

ze dr. Marko Homšak Jice Mhy Refels

TALUM . INSTITUT

Talum Inštitut, d.o.o. Tovarniška cesta 10 2325 Kidričevo

št. poročila: 2020/81191/166650

Kidričevo, 24.7.2020

POROČILO O PRESKUSU

SPLOŠNI PODATKI

naloga: Analiza za Nuklearno elektrarno Krško d.o.o. naročnik: NUKLEARNA ELEKTRARNA KRŠKO d.o.o. Vrbina 12, 8270 Krško št. naročila: 510001187 3200873

PODATKI O VZORCU

matriks:	TLA	območje:	Krško
oznaka vzorca:	TLANEK-1 5-20 cm	mesto odvzema:	TLANEK-1
grupa vzorca:	-	odvzemnik:	Napast Viktor
serija:	-	datum odvzema:	23.06.2020
izvor:	-	datum prevzema	
številka vzorca:	2020/81191	kraj izvedbe:	na naslovu izvajalca
stanje vzorca:	vzorec ustreza pogojem za sprejem		

REZULTATI ANALIZ

parameter	enota	izražen kot	standard	rezultat	merilna negotovost	#	začetek zaključek
ANORGANSKI PARAME	TRI						
Suha snov pri 105 °C	%		SIST ISO 11465:1996/Cor 1:2005	84.90	±1.83		29.6.2020 30.6.2020
Molibden	mg/kg s.s.	Мо	SIST EN ISO 17294-2:2017	<1.0		#	2.7.2020 6.7.2020
Arzen	mg/kg s.s.	As	SIST EN ISO 17294-2:2017	7.6	±0.6	#	2.7.2020 6.7.2020
Baker	mg/kg s.s.	Cu	SIST EN ISO 172 9 4-2:2017	19.5	±7.5	#	2.7.2020 6.7.2020
Cink	mg/kg s.s.	Zn	SIST EN ISO 172 9 4-2:2017	83.6	±22.5	#	2.7.2020 6.7.2020
Krom	mg/kg s.s.	Cr	SIST EN ISO 17294-2:2017	36.1	±6.2	#	2.7.2020 6.7.2020
Nikelj	mg/kg s.s.	Ni	SIST EN ISO 17294-2:2017	23.5	±7.4	#	2.7.2020 6.7.2020
Svinec	mg/kg s.s.	Pb	SIST EN ISO 17294-2:2017	36.3	±6.0	#	2.7.2020 6.7.2020
Kobalt	mg/kg s.s.	Со	SIST EN ISO 17294-2:2017	16.3	±1.2	#	2.7.2020 6.7.2020
Fluoridi - celotni	mg/kg s.s.		SIST ISO 10359-1:1996	307	±61	#	2.7.2020 6.7.2020
OSTALI PARAMETRI							
Priprava vzorca			SIST ISO 11464: 2006	Ustrezna		#	26.6.2020 29.6.2020

Podana negotovost je razširjena merilna negotovost, izračunana s faktorjem pokritja k, k=2, ki ustreza približno 95% stopnji zaupanja.

št. poročila: 2020/81191/166650

Opomba: Sestavni del "Poročila o preskusu" je "Priloga k Poročilu o preskusu".

Vodja laboratorija:

Majda Rola, univ. dipl. inž. kem. tehnol.

Direktor:

TALUM • INŠTITUT d.o.o. KIDRIČEVO

Opombe k parametru:	standard
F-celotni	SIST ISO 10359-1:1996
Vzorec, posušen na 105°C, smo zmešali s 500 ml vode, izvedli razklop v skladu s stand skladu s standardom SIST ISO 10359-1.	ardom SIST ISO 10359-2 ter analizo v
Mo, Ni, Co, Cu, Cr, Zn, As, Pb	SIST EN ISO 17294-2:2017
Vzorec je bil razklopljen v zaprti posodi z uporabo mikrovalov (standard ISO 12914).	

Vodja laboratorija:

Majda Rola, univ. dipl. inž. kem. tehnol.

Direktor:

adr. Marko Homšak Jaca Maly Pepel

TALUM • INŠTITUT d.o.o. K I D R I Č E V O

št. poročila: 2020/81192/166650

Kidričevo, 24.7.2020

POROČILO O PRESKUSU

SPLOŠNI PODATKI

naloga: Analiza za Nuklearno elektrarno Krško d.o.o. naročnik: NUKLEARNA ELEKTRARNA KRŠKO d.o.o. Vrbina 12, 8270 Krško št. naročila: 510001187 3200873

PODATKI O VZORCU

matriks:	TLA	območje:	Krško
oznaka vzorca:	TLANEK-2 0-5 cm	mesto odvzema:	TLANEK-2
grupa vzorca:	-	odvzemnik:	Napast Viktor
serija:	-	datum odvzema:	23.06.2020
izvor:	-	datum prevzema:	24.06.2020
številka vzorca:	2020/81192	kraj izvedbe:	na naslovu izvajalca
stanje vzorca:	vzorec ustreza pogojem za sprejem		

REZULTATI ANALIZ

parameter	enota	izražen kot	standard	rezultat	merilna # negotovost	začetek zaključek
ANORGANSKI PARAME	TRI					
Suha snov pri 105 °C	%		SIST ISO 11465:1996/Cor 1:2005	83.00	±1.79	29.6.2020 30.6.2020
Molibden	mg/kg s.s.	Мо	SIST EN ISO 17294-2:2017	1.1	±37.2 #	2.7.2020 6.7.2020
Arzen	mg/kg s.s.	As	SIST EN ISO 17294-2:2017	8.5	±0.6 #	2.7.2020 6.7.2020
Baker	mg/kg s.s.	Cu	SIST EN ISO 17294-2:2017	24.8	±9.5 #	2. 7.202 0 6.7.2020
Cink	mg/kg s.s.	Zn	SIST EN ISO 17294-2:2017	86.8	±23.3 #	2.7.2020 6.7.2020
Krom	mg/kg s.s.	Cr	SIST EN ISO 17294-2:2017	42.4	±7.3 #	2.7.2020 6.7.2020
Nikelj	mg/kg s.s.	Ni	SIST EN ISO 17294-2:2017	26.3	±8.3 #	2.7.2020 6.7.2020
Svinec	mg/kg s.s.	Pb	SIST EN ISO 17294-2:2017	30.5	±5.1 #	2.7.2020 6.7.2020
Kobalt	mg/kg s.s.	Co	SIST EN ISO 17294-2:2017	12.9	±0.9 #	2.7.2020 6.7.2020
Fluoridi - celotni	mg/kg s.s.		SIST ISO 10359-1:1996	271	±54 #	2.7.2020 6.7.2020
OSTALI PARAMETRI						
Priprava vzorca			SIST ISO 11464: 2006	Ustrezna	#	26.6.2020 29.6.2020

Podana negotovost je razširjena merilna negotovost, izračunana s faktorjem pokritja k, k=2, ki ustreza približno 95% stopnji zaupanja.

št. poročila: 2020/81192/166650

Opomba: Sestavni del "Poročila o preskusu" je "Priloga k Poročilu o preskusu".

Vodja laboratorija:

Majda Rola, univ. dipl. inž. kem. tehnol.

Direktor:

ædr. Marko Homšak Lice My Pepell

TALUM ∘ INŠTITUT d.o.o. KID RIČEV O

Opombe k parametru:	standard
F-celotni	SIST ISO 10359-1:1996
Vzorec, posušen na 105°C, smo zmešali s 500 ml vode, izvedli razklop v skladu s standardom SIST I: skladu s standardom SIST ISO 10359-1.	SO 10359-2 ter analizo v
Mo, Ni, Co, Cu, Cr, Zn, As, Pb	SIST EN ISO 17294-2:2017
Vzorec je bil razklopljen v zaprti posodi z uporabo mikrovalov (standard ISO 12914).	

Vodja laboratorija:

Majda Rola, univ. dipl. inž. kem. tehnol.

Direktor:

z dr. Marko Homšak

TALUM • INŠTITUT d.o.o. K I D R I Č E V O

št. poročila: 2020/81193/166650

Kidričevo, 24.7.2020

POROČILO O PRESKUSU

SPLOŠNI PODATKI

naloga: Analiza za Nuklearno elektrarno Krško d.o.o. naročnik: NUKLEARNA ELEKTRARNA KRŠKO d.o.o. Vrbina 12, 8270 Krško št. naročila: 510001187 3200873

PODATKI O VZORCU

matriks:	TLA	območje:	Krško
oznaka vzorca:	TLANEK-2 5-20 cm	mesto odvzema:	TLANEK-2
grupa vzorca:	-	odvzemnik:	Napast Viktor
serija:	-	datum odvzema:	23.06.2020
izvor:	-	datum prevzema	: 24.06.2020
številka vzorca:	2020/81193	kraj izvedbe:	na naslovu izvajalca
stanje vzorca:	vzorec ustreza pogojem za sprejem		

REZULTATI ANALIZ

parameter	enota	izražen kot	standard	rezultat	merilna negotovost	#	začetek zaključek
ANORGANSKI PARAME	TRI						
Suha snov pri 105 °C	%		SIST ISO 11465:1996/Cor 1:2005	84.50	±1.83		29.6.2020 30.6.2020
Molibden	mg/kg s.s.	Мо	SIST EN ISO 17294-2:2017	<1.0		#	2.7.2020 6.7.2020
Arzen	mg/kg s.s.	As	SIST EN ISO 17294-2:2017	9.4	±0.7	#	2.7.2020 6.7.2020
Baker	mg/kg s.s.	Cu	SIST EN ISO 17294-2:2017	24.1	±9.3	#	2.7.2020 6.7.2020
Cink	mg/kg s.s.	Zn	SIST EN ISO 17294-2:2017	81.3	±21.9	#	2.7.2020 6.7.2020
Krom	mg/kg s.s.	Cr	SIST EN ISO 17294-2:2017	46.3	±8.0	#	2.7.2020 6.7.2020
Nikelj	mg/kg s.s.	Ni	SIST EN ISO 17294-2:2017	28.7	±9.1	#	2.7.2020 6.7.2020
Svinec	mg/kg s.s.	Pb	SIST EN ISO 17294-2:2017	31.3	±5.2	#	2.7.2020 6.7.2020
Kobalt	mg/kg s.s.	Со	SIST EN ISO 17294-2:2017	17.9	±1.3	#	2.7.2020 6.7.2020
Fluoridi - celotni	mg/kg s.s.		SIST ISO 10359-1:1996	354	±71	#	2.7.2020 6.7.2020
OSTALI PARAMETRI							
Priprava vzorca			SIST ISO 11464: 2006	Ustrezna		#	26.6.2020 29.6.2020

Podana negotovost je razširjena merilna negotovost, izračunana s faktorjem pokritja k, k=2, ki ustreza približno 95% stopnji zaupanja.

št. poročila: 2020/81193/166650

Opomba: Sestavni del "Poročila o preskusu" je "Priloga k Poročilu o preskusu".

Vodja laboratorija:

Majda Rola, univ. dipl. inž. kem. tehnol.

Direktor:

Edr. Marko Homšak Jie My Repart KIDRIČEVO

Opombe k parametru:	standard
F-celotni	SIST ISO 10359-1:1996
Vzorec, posušen na 105°C, smo zmešali s 500 ml vode, izvedli razklop v skladu s standardom SIS skladu s standardom SIST ISO 10359-1.	ST ISO 10359-2 ter analizo v
Mo, Ni, Co, Cu, Cr, Zn, As, Pb	SIST EN ISO 17294-2:2017
Vzorec je bil razklopljen v zaprti posodi z uporabo mikrovalov (standard ISO 12914).	

Vodja laboratorija:

Majda Rola, univ. dipl. inž. kem. tehnol.

Direktor:

zodr. Marko Homšak

TALUM ∘ INŠTITUT d.o.o. KIDRIČEVO

št. poročila: 2020/81195/166650

Kidričevo, 24.7.2020

POROČILO O PRESKUSU

SPLOŠNI PODATKI

naloga: Analiza za Nuklearno elektrarno Krško d.o.o. naročnik: NUKLEARNA ELEKTRARNA KRŠKO d.o.o. Vrbina 12, 8270 Krško št. naročila: 510001187 3200873

PODATKI O VZORCU

matriks:	TLA	območje:	Krško
oznaka vzorca:	TLANEK-3 0-5 cm	mesto odvzema:	TLANEK-3
grupa vzorca:	-	odvzemnik:	Napast Viktor
serija:	14	datum odvzema:	23.06.2020
izvor:	-	datum prevzema	: 24.06.2020
številka vzorca:	2020/81195	kraj izvedbe:	na naslovu izvajalca
stanje vzorca:	vzorec ustreza pogojem za sprejem		

REZULTATI ANALIZ

parameter	enota	izražen kot	standard	rezultat	merilna ‡ negotovost	t začetek zaključek
ANORGANSKI PARAME	TRI					
Suha snov pri 105 °C	%		SIST ISO 11465:1996/Cor 1:2005	84.00	±1.81	29.6.2020 30.6.2020
Molibden	mg/kg s.s.	Мо	SIST EN ISO 17294-2:2017	<1.0	#	2.7.2020 6.7.2020
Arzen	mg/kg s.s.	As	SIST EN ISO 17294-2:2017	7.6	±0.6 #	2.7.2020 6.7.2020
Baker	mg/kg s.s.	Cu	SIST EN ISO 17294-2:2017	22.5	±8.6 #	t 2.7.2020 6.7.2020
Cink	mg/kg s.s.	Zn	SIST EN ISO 17294-2:2017	94.5	±25.4 #	2.7.2020 6.7.2020
Krom	mg/kg s.s.	Cr	SIST EN ISO 17294-2:2017	41.4	±7.1 #	2.7.2020 6.7.2020
Nikelj	mg/kg s.s.	Ni	SIST EN ISO 17294-2:2017	22.5	±7.1 #	2.7.2020 6.7.2020
Svinec	mg/kg s.s.	Pb	SIST EN ISO 17294-2:2017	38.9	±6.5 #	2.7.2020 6.7.2020
Kobalt	mg/kg s.s.	Co	SIST EN ISO 17294-2:2017	12.5	±0.9 #	2.7.2020 6.7.2020
Fluoridi - celotni	mg/kg s.s.		SIST ISO 10359-1:1996	378	±76 #	2.7.2020 6.7.2020
OSTALI PARAMETRI						
Priprava vzorca			SIST ISO 11464: 2006	Ustrezna	#	26.6.2020 29.6.2020

Podana negotovost je razširjena merilna negotovost, izračunana s faktorjem pokritja k, k=2, ki ustreza približno 95% stopnji zaupanja.

št. poročila: 2020/81195/166650

Opomba: Sestavni del "Poročila o preskusu" je "Priloga k Poročilu o preskusu".

Vodja laboratorija:

Majda Rola, univ. dipl. inž. kem. tehnol.

Direktor:

TALUM «INŠTITUT d.o.o. KIDRIČEVO

Opombe k parametru:

F-celotni

standard

SIST ISO

10359-1:1996 Vzorec, posušen na 105°C, smo zmešali s 500 ml vode, izvedli razklop v skladu s standardom SIST ISO 10359-2 ter analizo v skladu s standardom SIST ISO 10359-1.

Mo, Ni, Co, Cu, Cr, Zn, As, Pb

SIST EN ISO 17294-2:2017

Vzorec je bil razklopljen v zaprti posodi z uporabo mikrovalov (standard ISO 12914).

Vodja laboratorija:

Majda Rola, univ. dipl. inž. kem. tehnol.

Direktor:

Jice Marko Homšak

TALUM • INŠTITUT d.o.o. KIDRIČEVO

št. poročila: 2020/81196/166650

Kidričevo, 24.7.2020

POROČILO O PRESKUSU

SPLOŠNI PODATKI

naloga: Analiza za Nuklearno elektrarno Krško d.o.o. naročnik: NUKLEARNA ELEKTRARNA KRŠKO d.o.o. Vrbina 12, 8270 Krško št. naročila: 510001187 3200873

PODATKI O VZORCU

matriks:	TLA	območje:	Krško
oznaka vzorca:	TLANEK-3 5-20 cm	mesto odvzema:	TLANEK-3
grupa vzorca:	-	odvzemnik:	Napast Viktor
serija:	-	datum odvzema:	23.06.2020
izvor:		datum prevzema:	24.06.2020
številka vzorca:	2020/81196	kraj izvedbe:	na naslovu izvajalca
stanje vzorca:	vzorec ustreza pogojem za sprejem		

REZULTATI ANALIZ

parameter	enota	izražen kot	standard	rezultat	merilna # negotovost	začetek zaključek
ANORGANSKI PARAME	TRI					
Suha snov pri 105 °C	%		SIST ISO 11465:1996/Cor 1:2005	85.50	±1.85	29.6.2020 30.6.2020
Molibden	mg/kg s.s.	Мо	SIST EN ISO 17294-2:2017	<1.0	#	2.7.2020 6.7.2020
Arzen	mg/kg s.s.	As	SIST EN ISO 17294-2:2017	6.6	±0.5 #	2.7.2020 6.7.2020
Baker	mg/kg s.s.	Cu	SIST EN ISO 17294-2:2017	19.6	±7.5 #	2.7.2020 6.7.2020
Cink	mg/kg s.s.	Zn	SIST EN ISO 17294-2:2017	85.2	±22.9 #	2.7.2020 6.7.2020
Krom	mg/kg s.s.	Cr	SIST EN ISO 17294-2:2017	31.9	±5.5 #	2.7.2020 6.7.2020
Nikelj	mg/kg s.s.	Ni	SIST EN ISO 17294-2:2017	19.1	±6.0 #	2.7.2020 6.7.2020
Svinec	mg/kg s.s.	Pb	SIST EN ISO 172 9 4-2:2017	33.2	±5.5 #	2.7.2020 6.7.2020
Kobalt	mg/kg s.s.	Co	SIST EN ISO 17294-2:2017	17.0	±1.2 #	2.7.2020 6.7.2020
Fluoridi - celotni	mg/kg s.s.		SIST ISO 10359-1:1996	215	±43 #	2.7.2020 6.7.2020
OSTALI PARAMETRI						
Priprava vzorca			SIST ISO 11464: 2006	Ustrezna	#	26.6.2020 29.6.2020

Podana negotovost je razširjena merilna negotovost, izračunana s faktorjem pokritja k, k=2, ki ustreza približno 95% stopnji zaupanja.

št. poročila: 2020/81196/166650

Opomba: Sestavni del "Poročila o preskusu" je "Priloga k Poročilu o preskusu".

Vodja laboratorija:

Majda Rola, univ. dipl. inž. kem. tehnol.

Direktor:

z dr. Marko Homšak TALUM ● INŠTITUT d.o.o. KIDRIČEV O

Opombe k parametru:	standard
F-celotni	SIST ISO 10359-1:1996
Vzorec, posušen na 105°C, smo zmešali s 500 ml vode, izvedli razklop v skladu s stano skladu s standardom SIST ISO 10359-1.	lardom SIST ISO 10359-2 ter analizo v
Mo, Ni, Co, Cu, Cr, Zn, As, Pb	SIST EN ISO 17294-2:2017
Vzorec je bil razklopljen v zaprti posodi z uporabo mikrovalov (standard ISO 12914).	

Vodja laboratorija:

Majda Rola, univ. dipl. inž. kem. tehnol.

Direktor:

2 dr. Marko Homšak

TALUM • INŠTITUT d.o.o. KID RIČEV O

št. poročila: 2020/81197/166650

Kidričevo, 24.7.2020

POROČILO O PRESKUSU

SPLOŠNI PODATKI

naloga: Analiza za Nuklearno elektrarno Krško d.o.o. NUKLEARNA ELEKTRARNA KRŠKO d.o.o. naročnik: Vrbina 12, 8270 Krško št. naročila: 510001187 3200873

PODATKI O VZORCU

matriks:	TLA	območje:	Krško
oznaka vzorca:	TLANEK-4 0-5 cm	mesto odvzema:	TLANEK-4
grupa vzorca:	-	odvzemnik:	Napast Viktor
serija:	-	datum odvzema:	23.06.2020
izvor:	-	datum prevzema	: 24.06.2020
številka vzorca:	2020/81197	kraj izvedbe:	na naslovu izvajalca
stanje vzorca:	vzorec ustreza pogojem za sprejem		

REZULTATI ANALIZ

parameter	enota	izražen kot	standard	rezultat	merilna # negotovost	začetek zaključek
ANORGANSKI PARAME	TRI					
Suha snov pri 105 °C	%		SIST ISO 11465:1996/Cor 1:2005	82.30	±1.78	29.6.2020 30.6.2020
Molibden	mg/kg s.s.	Mo	SIST EN ISO 17294-2:2017	<1.0	#	2.7.2020 6.7.2020
Arzen	mg/kg s.s.	As	SIST EN ISO 17294-2:2017	6.0	±0.4 #	2.7.2020 6.7.2020
Baker	mg/kg s.s.	Cu	SIST EN ISO 17294-2:2017	34.8	±13.4 #	2.7.2020 6.7.2020
Cink	mg/kg s.s.	Zn	SIST EN ISO 172 9 4-2:2017	88.9	±23.9 #	2.7.2020 6.7.2020
Krom	mg/kg s.s.	Cr	SIST EN ISO 17294-2:2017	42.6	±7.3 #	2.7.2020 6.7.2020
Nikelj	mg/kg s.s.	Ní	SIST EN ISO 17294-2:2017	22.6	±7.1 #	2.7.2020 6.7.2020
Svinec	mg/kg s.s.	Pb	SIST EN ISO 17294-2:2017	31.0	±5.1 #	2.7.2020 6.7.2020
Kobalt	mg/kg s.s.	Co	SIST EN ISO 17294-2:2017	20.9	±1.5 #	2.7.2020 6.7.2020
Fluoridi - celotni	mg/kg s.s.		SIST ISO 10359-1:1996	260	±52 #	2.7.2020 6.7.2020
OSTALI PARAMETRI						
Priprava vzorca			SIST ISO 11464: 2006	Ustrezna	#	26.6.2020 29.6.2020

Podana negotovost je razširjena merilna negotovost, izračunana s faktorjem pokritja k, k=2, ki ustreza približno 95% stopnji zaupanja.

št. poročila: 2020/81197/166650

Opomba: Sestavni del "Poročila o preskusu" je "Priloga k Poročilu o preskusu".

Vodja laboratorija:

Majda Rola, univ. dipl. inž. kem. tehnol.

Direktor:

2 dr. Marko Homšak ŀ

TALUM • INŠTITUT d.o.o. K I D R I Č E V O

Opombe k parametru:	standard
F-celotni	SIST ISO 10359-1:1996
Vzorec, posušen na 105°C, smo zmešali s 500 ml vode, izvedli razklop v skladu s standardom skladu s standardom SIST ISO 10359-1.	SIST ISO 10359-2 ter analizo v
Mo, Ni, Co, Cu, Cr, Zn, As, Pb	SIST EN ISO 17294-2:2017
Vzorec je bil razklopljen v zaprti posodi z uporabo mikrovalov (standard ISO 12914).	

Vodja laboratorija:

Majda Rola, univ. dipl. inž. kem. tehnol.

Direktor:

🔈 dr. Marko Homšak J-ice Why Tepel 1 TALUM . INSTITUT d.o.o. KIDRIČEVO

TALUM OINŠTITUT

št. poročila: 2020/81198/166650

Kidričevo, 24.7.2020

POROČILO O PRESKUSU

SPLOŠNI PODATKI

naloga: Analiza za Nuklearno elektrarno Krško d.o.o. naročnik: NUKLEARNA ELEKTRARNA KRŠKO d.o.o. Vrbina 12, 8270 Krško št. naročila: 510001187 3200873

PODATKI O VZORCU

matriks:	TLA	območje:	Krško
oznaka vzorca:	TLANEK-4 5-20 cm	mesto odvzema:	TLANEK-4
grupa vzorca:	-	odvzemnik:	Napast Viktor
serija:	~	datum odvzema:	23.06.2020
izvor:	-	datum prevzema	: 24.06.2020
številka vzorca:	2020/81198	kraj izvedbe:	na naslovu izvajalca
stanje vzorca:	vzorec ustreza pogojem za sprejem		

REZULTATI ANALIZ

parameter	enota	izražen kot	standard	rezultat	merilna # negotovost	začetek zaključek
ANORGANSKI PARAME	TRI					
Suha snov pri 105 °C	%		SIST ISO 11465:1996/Cor 1:2005	86.00	±1.86	29.6.2020 30.6.2020
Molibden	mg/kg s.s.	Мо	SIST EN ISO 17294-2:2017	<1.0	#	2.7.2020 6.7.2020
Arzen	mg/kg s.s.	As	SIST EN ISO 17294-2:2017	6.8	±0.5 #	2.7.2020 6.7.2020
Baker	mg/kg s.s.	Cu	SIST EN ISO 17294-2:2017	25.7	±9.9 #	2.7.2020 6.7.2020
Cink	mg/kg s.s.	Zn	SIST EN ISO 17294-2:2017	83.2	±22.4 #	2.7.2020 6.7.2020
Krom	mg/kg s.s.	Cr	SIST EN ISO 17294-2:2017	41.2	±7.1 #	2.7.2020 6.7.2020
Nikelj	mg/kg s.s.	Ni	SIST EN ISO 17294-2:2017	22.2	±7.0 #	2.7.2020 6.7.2020
Svinec	mg/kg s.s.	Pb	SIST EN ISO 17294-2:2017	31.5	±5.2 #	2.7.2020 6.7.2020
Kobalt	mg/kg s.s.	Co	SIST EN ISO 17294-2:2017	16.5	±1.2 #	2. 7.2020 6.7.2020
Fluoridi - celotni	mg/kg s.s.		SIST ISO 10359-1:1996	191	±38 #	2.7.2020 6.7.2020
OSTALI PARAMETRI						
Priprava vzorca			SIST ISO 11464; 2006	Ustrezna	#	26.6.2020 29.6.2020

Podana negotovost je razširjena merilna negotovost, izračunana s faktorjem pokritja k, k=2, ki ustreza približno 95% stopnji zaupanja.

št. poročila: 2020/81198/166650

Opomba: Sestavni del "Poročila o preskusu" je "Priloga k Poročilu o preskusu".

Vodja laboratorija:

Majda Rola, univ. dipl. inž. kem. tehnol.

Direktor:

a dr. Marko Homšak Lice My Pejelil TALUM ∙ INŠTITUT d.o.o. KID RIČE V O

Opombe k parametru:	standard
F-celotni	SIST ISO 10359-1:1996
Vzorec, posušen na 105°C, smo zmešali s 500 ml vode, izvedli razklop v skladu s standardom S skladu s standardom SIST ISO 10359-1.	SIST ISO 10359-2 ter analizo v
Mo, Ni, Co, Cu, Cr, Zn, As, Pb	SIST EN ISO 17294-2:2017
Vzorec je bil razklopljen v zaprti posodi z uporabo mikrovalov (standard ISO 12914).	

Vodja laboratorija:

Majda Rola, univ. dipl. inž. kem. tehnol.

Direktor:

🖟 dr. Marko Homšak TALUM • INŠTITUT d.o.o. KIDRIČEVO Ji co Unly Tes

Hacquetova ulica 17, SI-1000 Ljubljana Slovenija/Slovenia T +386 (0)1 280 52 62 | F + 386 (0)1 280 52 55 | E info@kis.si

www.kis.si

TALUM INŠTITUT D.O.O. TOVARNIŠKA CESTA 10 2325 KIDRIČEVO

Ljubljana, 24.7.2020

POROČILO O PRESKUSU št.: 02727/2020

Vzorec:	Zemlja; Številka vzorca: 2020/81190
Analitska številka:	20-02727
Datum prejema vzorca:	2.7.2020
Datum izvajanja preskusa:	od 7.7.2020 do 24.7.2020

REZULTATI ANALIZE:

Parameter	Enota	Rezultat	Referenca
pH v CaCl ₂	-	7,6	ISO 10390:2005
P ₂ O ₅ (dostopni)	mg/100g	3,0 #	ÖNORM L 1087 – mod.
K ₂ O (dostopni)	mg/100g	15 #	ÖNORM L 1087 – mod.
Skupni dušik (N)	g/kg s.s.	1,7	ISO 11261:1995 mod.
Organski ogljik (C _{org})	g/kg s.s.	18,0 #	SIST ISO 14235:1999 mod.
Organska snov	%	3,1 #	SIST ISO 14235:1999 mod.
Glina (< 2 µm)	%	13,0 #	ISO 11277:2009 mod.
Fini melj (2 - 20 μm)	%	21,8 #	ISO 11277:2009 mod.
Grobi melj (20 - 50 µm)	%	17,2 #	ISO 11277:2009 mod.
Fini pesek (50 - 200 µm)	%	35,4 #	ISO 11277:2009 mod.
Grobi pesek (200 - 2000 µm)	%	12,6 #	ISO 11277:2009 mod.
Teksturni razred		I #	Ameriška tekst. klasifikacija
Specifična električna prev.	mS/m	10,9 #	ISO 11265:1994

I: ilovica

Vzorci tal so bili pripravljeni v skladu s standardom SIST ISO 11464:2006, frakcija deloev večjih od 2 mm je bila odstranjena. Rezultati analize se nanašajo izključno na preskušane vzorce. Podani so v zračno suhem vzorcu razen, kjer je pri enoti oznaka s.s., ki pomeni v suhi snovi. Razmnoževanje tega dokumenta ni dovoljeno razen v celoti kot faksimile. Poročilo o preskušanje podano v poenostavljeni obliki. Vse dodatne informacije o preskušanju so na voljo v laboratoriju.

POROČILO O PRESKUSU št.: 02727/2020

REZULTATI ANALIZE-nadaljevanje:

Parameter	Enota	Rezultat	Referenca
Ca izmenljivi	mmol+/100g	32,50 #	NF X31-108:2002
Mg izmenljivi	mmol+/100g	1,48 #	NF X31-108:2002
K izmenljivi	mmol+/100g	0,28 #	NF X31-108:2002
Na izmenljivi	mmol+/100g	0,03 #	NF X31-108:2002
Skupna izmenljiva kislost	mmol+/100g	1,00 #	Interna metoda (Mehlich-Peech)
Vsota bazičnih kationov (S)	mmol+/100g	34,29 #	Izračun (Soil Survey Lab.Manual,1992)
Kationska izm. kapaciteta (T)	mmol+/100g	35,29 #	Izračun (Soil Survey Lab.Manual,1992)
Delež bazičnih kationov (V)	%	97,2 #	Izračun (Soil Survey Lab.Manual,1992)

JUBLJANA BU

Odgovorni analitik: N. Zuidorne?

mag. Vida Žnidaršič Pongrac, univ.dipl.kem.

Vzorci tal so bili pripravljeni v skladu s standardom SIST ISO 11464:2006, frakcija delcev večjih od 2 mm je bila odstranjena. Rezultati analize se nanašajo izključno na preskušane vzorce. Podani so v zračno suhem vzorcu razen, kjer je pri enoti oznaka s.s., ki pomeni v suhi snovi. Razmnoževanje tega dokumenta ni dovoljeno razen v celoti kot faksimile. Poročilo o preskusu je podano v poenostavljeni obliki. Vse dodatne informacije o preskušanju so na voljo v laboratoriju.

Hacquetova ulica 17, SI-1000 Ljubljana Slovenija/Slovenia T +386 (0)1 280 52 62 | F + 386 (0)1 280 52 55 | E info@kis.si

www.kis.si

TALUM INŠTITUT D.O.O. TOVARNIŠKA CESTA 10 2325 KIDRIČEVO

Ljubljana, 24.7.2020

POROČILO O PRESKUSU št.: 02728/2020

Vzorec:	Zemlja; Številka vzorca: 2020/81191
Analitska številka:	20-02728
Datum prejema vzorca:	2.7.2020
Datum izvajanja preskusa:	od 7.7.2020 do 24.7.2020

REZULTATI ANALIZE:

Parameter	Enota	Rezultat	Referenca
pH v CaCl ₂	-	7,8	ISO 10390:2005
P ₂ O ₅ (dostopni)	mg/100g	2,7 #	ÖNORM L 1087 – mod.
K ₂ O (dostopni)	mg/100g	7,3 #	ÖNORM L 1087 – mod.
Skupni dušik (N)	g/kg s.s.	1,1	ISO 11261:1995 mod.
Organski ogljik (C _{org})	g/kg s.s.	12,2 #	SIST ISO 14235:1999 mod.
Organska snov	%	2,1 #	SIST ISO 14235:1999 mod.
Glina (< 2 µm)	%	12,2 #	ISO 11277:2009 mod.
Fini melj (2 - 20 µm)	%	22,3 #	ISO 11277:2009 mod.
Grobi melj (20 - 50 µm)	%	18,2 #	ISO 11277:2009 mod.
Fini pesek (50 - 200 µm)	%	31,0 #	ISO 11277:2009 mod.
Grobi pesek (200 - 2000 µm)	%	16,3 #	ISO 11277:2009 mod.
Teksturni razred		I #	Ameriška tekst. klasifikacija
Specifična električna prev.	mS/m	9,5 #	ISO 11265:1994

I: ilovica

Vzorci tal so bili pripravljeni v skladu s standardom SIST ISO 11464:2006, frakcija delcev večjih od 2 mm je bila odstranjena. Rezultati analize se nanašajo izključno na preskušane vzorce. Podani so v zračno suhem vzorcu razen, kjer je pri enoti oznaka s.s., ki pomeni v suhi snovi. Razmnoževanje tega dokumenta ni dovoljeno razen v celoti kot faksimile. Poročilo o preskušanje podano v poenostavljeni obliki. Vse dodatne informacije o preskušanju so na voljo v laboratoriju.

POROČILO O PRESKUSU št.: 02728/2020

REZULTATI ANALIZE-nadaljevanje:

Parameter	Enota	Rezultat	Referenca
Ca izmenljivi	mmol+/100g	32,35 #	NF X31-108:2002
Mg izmenljivi	mmol+/100g	1,36 #	NF X31-108:2002
K izmenljivi	mmol+/100g	0,17 #	NF X31-108:2002
Na izmenljivi	mmol+/100g	0,03 #	NF X31-108:2002
Skupna izmenljiva kislost	mmol+/100g	0,25 #	Interna metoda (Mehlich-Peech)
Vsota bazičnih kationov (S)	mmol+/100g	33,91 #	Izračun (Soil Survey Lab.Manual,1992)
Kationska izm. kapaciteta (T)	mmol+/100g	34,16 #	Izračun (Soil Survey Lab.Manual,1992)
Delež bazičnih kationov (V)	%	99,3 #	Izračun (Soil Survey Lab.Manual,1992)

N. Zuidonie?

mag. Vida Žnidaršič Pongrac, univ.dipl.kem.

Vzorci tal so bili pripravljeni v skladu s standardom SIST ISO 11464:2006, frakcija delcev večjih od 2 mm je bila odstranjena. Rezultati analize se nanašajo izključno na preskušane vzorce. Podani so v zračno suhem vzorcu razen, kjer je pri enoti oznaka s.s., ki pomeni v subi snovi. Razmnoževanje tega dokumenta ni dovoljeno razen v celoti kot faksimile. Poročilo o preskusu je podano v poenostavljeni obliki. Vse dodatne informacije o preskušanju so na voljo v laboratoriju.

Hacquetova ulica 17, SI-1000 Ljubljana

Slovenija/Slovenia T +386 (0)1 280 52 62 | F + 386 (0)1 280 52 55 | E info@kis.si

www.kis.si

TALUM INŠTITUT D.O.O. TOVARNIŠKA CESTA 10 2325 KIDRIČEVO

Ljubljana, 24.7.2020

POROČILO O PRESKUSU št.: 02729/2020

Vzorec:	Zemlja; Številka vzorca: 2020/81192
Analitska številka:	20-02729
Datum prejema vzorca:	2.7.2020
Datum izvajanja preskusa:	od 7.7.2020 do 24.7.2020

REZULTATI ANALIZE:

Parameter	Enota	Rezultat	Referenca
pH v CaCl ₂	-	7,6	ISO 10390:2005
P ₂ O ₅ (dostopni)	mg/100g	3,6 #	ÖNORM L 1087 – mod.
K ₂ O (dostopni)	mg/100g	18 #	ÖNORM L 1087 – mod.
Skupni dušik (N)	g/kg s.s.	2,3	ISO 11261:1995 mod.
Organski ogljik (C _{org})	g/kg s.s.	22,3 #	SIST ISO 14235:1999 mod.
Organska snov	%	3,8 #	SIST ISO 14235:1999 mod.
Glina (< 2 μm)	%	14,1 #	ISO 11277:2009 mod.
Fini melj (2 - 20 μm)	%	29,2 #	ISO 11277:2009 mod.
Grobi melj (20 - 50 μm)	%	19,8 #	ISO 11277:2009 mod.
Fini pesek (50 - 200 µm)	%	25,0 #	ISO 11277:2009 mod.
Grobi pesek (200 - 2000 µm)	%	11,9 #	ISO 11277:2009 mod.
Teksturni razred		I #	Ameriška tekst. klasifikacija
Specifična električna prev.	mS/m	13,9 #	ISO 11265:1994

I: ilovica

Vzorci tal so bili pripravljeni v skladu s standardom SIST ISO 11464:2006, frakcija delcev večjih od 2 mm je bila odstranjena. Rezultati analize se nanašajo izključno na preskušane vzorce. Podani so v zračno suhem vzorcu razen, kjer je pri enoti oznaka s.s., ki pomeni v suhi snovi. Razmnoževanje tega dokumenta ni dovoljeno razen v celoti kot faksimile. Poročilo o preskušanje podano v poenostavljeni obliki. Vse dodatne informacije o preskušanju so na voljo v laboratoriju.

POROČILO O PRESKUSU št.: 02729/2020

REZULTATI ANALIZE-nadaljevanje:

Parameter	Enota	Rezultat		Referenca
Ca izmenljivi	mmol+/100g	34,18 #	¥	NF X31-108:2002
Mg izmenljivi	mmol+/100g	1,76 #	¥	NF X31-108:2002
K izmenljivi	mmol+/100g	0,37 \$	ŧ	NF X31-108:2002
Na izmenljivi	mmol+/100g	0,03 #	Ħ	NF X31-108:2002
Skupna izmenljiva kislost	mmol+/100g	0,75 #	#	Interna metoda (Mehlich-Peech)
Vsota bazičnih kationov (S)	mmol+/100g	36,34 #	#	Izračun (Soil Survey Lab.Manual,1992)
Kationska izm. kapaciteta (T)	mmol+/100g		#	Izračun (Soil Survey Lab.Manual,1992)
Delež bazičnih kationov (V)	%		#	Izračun (Soil Survey Lab.Manual,1992)

Odgovorni analitik: N. Zuidorat.

mag. Vida Žnidaršič Pongrac, univ.dipl.kem.

Vzorci tal so bili pripravljeni v skladu s standardom SIST ISO 11464:2006, frakcija delcev večjih od 2 mm je bila odstranjena. Rezultati analize se nanašajo izključno na preskušane vzorce. Podani so v zračno suhem vzorcu razen, kjer je pri enoti oznaka s.s., ki pomeni v suhi snovi. Razmnoževanje tega dokumenta ni dovoljeno razen v celoti kot faksimile. Poročilo o preskusu je podano v poenostavljeni obliki. Vse dodatne informacije o preskušanju so na voljo v laboratoriju.

Hacquetova ulica 17, SI-1000 Ljubljana Slovenija/Slovenia T +386 (0)1 280 52 62 | F + 386 (0)1 280 52 55 | E info@kis.si

www.kis.si

TALUM INŠTITUT D.O.O. TOVARNIŠKA CESTA 10 2325 KIDRIČEVO

Ljubljana, 24.7.2020

POROČILO O PRESKUSU št.: 02730/2020

Vzorec:	Zemlja; Številka vzorca: 2020/81193
Analitska številka:	20-02730
Datum prejema vzorca:	2.7.2020
Datum izvajanja preskusa:	od 7.7.2020 do 24.7.2020

REZULTATI ANALIZE:

Parameter	Enota	Rezultat	Referenca
pH v CaCl ₂	-	7,6	ISO 10390:2005
P ₂ O ₅ (dostopni)	mg/100g	2,4 #	ÖNORM L 1087 – mod.
K ₂ O (dostopni)	mg/100g	8,2 #	ÖNORM L 1087 – mod.
Skupni dušik (N)	g/kg s.s.	1,5	ISO 11261:1995 mod.
Organski ogljik (C _{org})	g/kg s.s.	13,1 #	SIST ISO 14235:1999 mod.
Organska snov	%	2,2 #	SIST ISO 14235:1999 mod.
Glina (< 2 µm)	%	14,4 #	ISO 11277:2009 mod.
Fini melj (2 - 20 μm)	%	30,8 #	ISO 11277:2009 mod.
Grobi melj (20 - 50 μm)	%	21,3 #	ISO 11277:2009 mod.
Fini pesek (50 - 200 µm)	%	26,4 #	ISO 11277:2009 mod.
Grobi pesek (200 - 2000 µm)	%	7,2 #	ISO 11277:2009 mod.
Teksturni razred		MI #	Ameriška tekst. klasifikacija
Specifična električna prev.	mS/m	11,0 #	ISO 11265:1994

MI: meljasta ilovica

Vzorci tal so bili pripravljeni v skladu s standardom SIST ISO 11464:2006, frakcija delcev večjih od 2 mm je bila odstranjena. Rezultati analize se nanašajo izključno na preskušane vzorce. Podani so v zračno suhem vzorcu razen, kjer je pri enoti oznaka s.s., ki pomeni v suhi snovi. Razmnoževanje tega dokumenta ni dovoljeno razen v celoti kot faksimile. Poročilo o preskušanju so na voljo v laboratoriju.

POROČILO O PRESKUSU št.: 02730/2020

Parameter	Enota	Rezultat	Referenca
Ca izmenljivi	mmol+/100g	34,68 #	NF X31-108:2002
Mg izmenljivi	mmol+/100g	1,51 #	NF X31-108:2002
K izmenljivi	mmol+/100g	0,18 #	NF X31-108:2002
Na izmenljivi	mmol+/100g	0,04 #	NF X31-108:2002
Skupna izmenljiva kislost	mmol+/100g	0,50 #	Interna metoda (Mehlich-Peech)
Vsota bazičnih kationov (S)	mmol+/100g	36,41 #	Izračun (Soil Survey Lab.Manual, 1992)
Kationska izm. kapaciteta (T)	mmol+/100g	36,91 #	Izračun (Soil Survey Lab.Manual,1992)
Delež bazičnih kationov (V)	%	98,6 #	Izračun (Soil Survey Lab.Manual, 1992)

<u>REZULTATI ANALIZE-nadaljevanje:</u>

mag. Vida Žnidaršič Pongrac, univ.dipl.kem.

Vzorci tal so bili pripravljeni v skladu s standardom SIST ISO 11464:2006, frakcija delcev večjih od 2 mm je bila odstranjena. Rezultati analize se nanašajo izključno na preskušane vzorce. Podani so v zračno suhem vzorcu razen, kjer je pri enoti oznaka s.s., ki pomeni v suhi snovi. Razmnoževanje tega dokumenta ni dovoljeno razen v celoti kot faksimile. Poročilo o preskušanju so na voljo v laboratoriju.

Hacquetova ulica 17, SI-1000 Ljubljana

Slovenija/Slovenia T +386 (0)1 280 52 62 | F + 386 (0)1 280 52 55 | E info@kis.si

www.kis.si

TALUM INŠTITUT D.O.O. TOVARNIŠKA CESTA 10 2325 KIDRIČEVO

Ljubljana, 24.7.2020

POROČILO O PRESKUSU št.: 02731/2020

Vzorec:	Zemlja; Številka vzorca: 2020/81195
Analitska številka:	20-02731
Datum prejema vzorca:	2.7.2020
Datum izvajanja preskusa:	od 7.7.2020 do 24.7.2020

REZULTATI ANALIZE:

Parameter	Enota	Rezultat	Referenca
pH v CaCl ₂	-	7,7	ISO 10390:2005
P ₂ O ₅ (dostopni)	mg/100g	2,6 #	ÖNORM L 1087 – mod.
K ₂ O (dostopni)	mg/100g	11 #	ÖNORM L 1087 – mod.
Skupni dušik (N)	g/kg s.s.	1,5	ISO 11261:1995 mod.
Organski ogljik (C _{org})	g/kg s.s.	18,7 #	SIST ISO 14235:1999 mod.
Organska snov	%	3,2 #	SIST ISO 14235:1999 mod.
Glina (< 2 μm)	%	10,6 #	ISO 11277:2009 mod.
Fini melj (2 - 20 μm)	%	17,5 #	ISO 11277:2009 mod.
Grobi melj (20 - 50 μm)	%	16,3 #	ISO 11277:2009 mod.
Fini pesek (50 - 200 µm)	%	41,1 #	ISO 11277:2009 mod.
Grobi pesek (200 - 2000 µm)	%	14,6 #	ISO 11277:2009 mod.
Teksturni razred		PI #	Ameriška tekst. klasifikacija
Specifična električna prev.	mS/m	10,0 #	ISO 11265:1994

PI: peščena ilovica

Vzorci tal so bili pripravljeni v skladu s standardom SIST ISO 11464:2006, frakcija delcev večjih od 2 mm je bila odstranjena. Rezultati analize se nanašajo izključno na preskušane vzorce. Podani so v zračno suhem vzorcu razen, kjer je pri enoti oznaka s.s., ki pomeni v suhi snovi. Razmnoževanje tega dokumenta ni dovoljeno razen v celoti kot faksimile. Poročilo o preskušanje o preskušanje so na voljo v laboratoriju.

POROČILO O PRESKUSU št.: 02731/2020

REZULTATI ANALIZE-nadaljevanje:

Parameter	Enota	Rezultat		Referenca		
Ca izmenljivi mmol+/100g		33,69 #	ŧ	NF X31-108:2002		
Mg izmenljivi	mmol+/100g	1,38 #	¥	NF X31-108:2002		
K izmenljivi	mmol+/100g	0,21 #	¥	NF X31-108:2002		
Na izmenljivi	mmol+/100g	0,03 <i>‡</i>	ŧ	NF X31-108:2002		
Skupna izmenljiva kislost	mmol+/100g	0,50 #	#	Interna metoda (Mehlich-Peech)		
Vsota bazičnih kationov (S)	mmol+/100g	35,31 #	#	Izračun (Soil Survey Lab.Manual, 1992)		
Kationska izm. kapaciteta (T)	mmol+/100g		#	Izračun (Soil Survey Lab.Manual,1992)		
Delež bazičnih kationov (V)	%		#	Izračun (Soil Survey Lab.Manual,1992)		

N. Odgovorni analitik:

mag. Vida Žnidaršič Pongrac, univ.dipl.kem.

Vzorci tal so bili pripravljeni v skladu s standardom SIST ISO 11464:2006, frakcija delcev večjih od 2 mm je bila odstranjena. Rezultati analize se nanašajo izključno na preskušane vzorce. Podani so v zračno suhem vzorcu razen, kjer je pri enoti oznaka s.s., ki pomeni v suhi snovi. Razmnoževanje tega dokumenta ni dovoljeno razen v celoti kot faksimile. Poročilo o preskusu je podano v poenostavljeni obliki. Vse dodatne informacije o preskušanju so na voljo v laboratoriju.

Hacquetova ulica 17, SI-1000 Ljubljana Slovenija/Slovenia T +386 (0)1 280 52 62 | F + 386 (0)1 280 52 55 | E info@kis.si

www.kis.si

TALUM INŠTITUT D.O.O. TOVARNIŠKA CESTA 10 2325 KIDRIČEVO

Ljubljana, 24.7.2020

POROČILO O PRESKUSU št.: 02732/2020

Vzorec:	Zemlja; Številka vzorca: 2020/81196
Analitska številka:	20-02732
Datum prejema vzorca:	2.7.2020
Datum izvajanja preskusa:	od 7.7.2020 do 24.7.2020

REZULTATI ANALIZE:

Parameter	Enota	Rezultat	Referenca
pH v CaCl ₂	-	7,7	ISO 10390:2005
P ₂ O ₅ (dostopni)	mg/100g	2,2 #	ÖNORM L 1087 – mod.
K ₂ O (dostopni)	mg/100g	6,8 #	ÖNORM L 1087 – mod.
Skupni dušik (N)	g/kg s.s.	1,2	ISO 11261:1995 mod.
Organski ogljik (C _{org})	g/kg s.s.	17,1 #	SIST ISO 14235:1999 mod.
Organska snov	%	2,9 #	SIST ISO 14235:1999 mod.
Glina (< 2 µm)	%	9,8 #	ISO 11277:2009 mod.
Fini melj (2 - 20 µm)	%	17,7 #	ISO 11277:2009 mod.
Grobi melj (20 - 50 µm)	%	14,4 #	ISO 11277:2009 mod.
Fini pesek (50 - 200 µm)	%	33,4 #	ISO 11277:2009 mod.
Grobi pesek (200 - 2000 µm)	%	24,7 #	ISO 11277:2009 mod.
Teksturni razred		PI #	Ameriška tekst. klasifikacija
Specifična električna prev.	mS/m	9,5 #	ISO 11265:1994

PI: peščena ilovica

Vzorci tal so bili pripravljeni v skladu s standardom SIST ISO 11464:2006, frakcija delcev večjih od 2 mm je bila odstranjena. Rezultati analize se nanašajo izključno na preskušane vzorce. Podani so v zračno suhem vzorcu razen, kjer je pri enoti oznaka s.s., ki pomeni v suhi snovi. Razmnoževanje tega dokumenta ni dovoljeno razen v celoti kot faksimile. Poročilo o preskušane u je podano v poenostavljeni obliki. Vse dodatne informacije o preskušanju so na voljo v laboratoriju.

POROČILO O PRESKUSU št.: 02732/2020

REZULTATI ANALIZE-nadaljevanje:

Parameter	Enota	Rezultat	Referenca		
Ca izmenljivi	mmol+/100g	32,56 #	NF X31-108:2002		
Mg izmenljivi	mmol+/100g	1,26 #	NF X31-108:2002		
K izmenljivi	mmol+/100g	0,15 #	NF X31-108:2002		
Na izmenljivi	mmol+/100g	0,04 #	NF X31-108:2002		
Skupna izmenljiva kislost	a kislost mmol+/100g 0,05 # Interna metoda (Mehlich-Peed		Interna metoda (Mehlich-Peech)		
Vsota bazičnih kationov (S)	mmol+/100g	34,01 #	Izračun (Soil Survey Lab.Manual,1992)		
Kationska izm. kapaciteta (T)	mmol+/100g	34,06 #	Izračun (Soil Survey Lab.Manual,1992)		
Delež bazičnih kationov (V)	%	99,9 #	Izračun (Soil Survey Lab.Manual,1992		

Odgovorni analitik: N. Zuidoric P.

mag. Vida Žnidaršič Pongrac, univ.dipl.kem.

Vzorci tal so bili pripravljeni v skladu s standardom SIST ISO 11464:2006, frakcija delcev večjih od 2 mm je bila odstranjena. Rezultati analize se nanašajo izključno na preskušane vzorce. Podani so v zračno suhem vzorcu razen, kjer je pri enoti oznaka s.s., ki pomeni v suhi snovi. Razmnoževanje tega dokumenta ni dovoljeno razen v celoti kot faksimile. Poročilo o preskusu je podano v poenostavljeni obliki. Vse dodatne informacije o preskušanju so na voljo v laboratoriju.

Hacquetova ulica 17, SI-1000 Ljubljana Slovenija/Slovenia T +386 (0)1 280 52 62 | F + 386 (0)1 280 52 55 | E info@kis.si

www.kis.si

TALUM INŠTITUT D.O.O. TOVARNIŠKA CESTA 10 2325 KIDRIČEVO

Ljubljana, 24.7.2020

POROČILO O PRESKUSU št.: 02733/2020

Vzorec:	Zemlja; Številka vzorca: 2020/81197
Analitska številka:	20-02733
Datum prejema vzorca:	2.7.2020
Datum izvajanja preskusa:	od 7.7.2020 do 24.7.2020

REZULTATI ANALIZE:

Parameter	Enota	Rezultat	Referenca
pH v CaCl ₂	-	7,6	ISO 10390:2005
P ₂ O ₅ (dostopni)	mg/100g	2,6 #	ÖNORM L 1087 – mod.
K ₂ O (dostopni)	mg/100g	18 #	ÖNORM L 1087 – mod.
Skupni dušik (N)	g/kg s.s.	2,4	ISO 11261:1995 mod.
Organski ogljik (C _{org})	g/kg s.s.	26,0 #	SIST ISO 14235:1999 mod.
Organska snov	%	4,4 #	SIST ISO 14235:1999 mod.
Glina (<2 µm)	%	14,5 #	ISO 11277:2009 mod.
Fini melj (2 - 20 µm)	%	22,2 #	ISO 11277:2009 mod.
Grobi melj (20 - 50 μm)	%	12,7 #	ISO 11277:2009 mod.
Fini pesek (50 - 200 µm)	%	21,7 #	ISO 11277:2009 mod.
Grobi pesek (200 - 2000 µm)	%	28,9 #	ISO 11277:2009 mod.
Teksturni razred		I #	Ameriška tekst. klasifikacija
Specifična električna prev.	mS/m	15,0 #	ISO 11265:1994

I: ilovica

Vzorci tal so bili pripravljeni v skladu s standardom SIST ISO 11464:2006, frakcija delcev večjih od 2 mm je bila odstranjena. Rezultati analize se nanašajo izključno na preskušane vzorce. Podani so v zračno suhem vzorcu razen, kjer je pri enoti oznaka s.s., ki pomeni v suhi snovi. Razmnoževanje tega dokumenta ni dovoljeno razen v celoti kot faksimile. Poročilo o preskušanju so na voljo v laboratoriju.

POROČILO O PRESKUSU št.: 02733/2020

REZULTATI ANALIZE-nadaljevanje:

Parameter	Enota	Rezultat 34,27 #		Referenca		
Ca izmenljivi	mmol+/100g			NF X31-108:2002		
Mg izmenljivi	mmol+/100g 1,74 # NF X31-108:2002		NF X31-108:2002			
K izmenljivi	mmol+/100g	0,36	#	NF X31-108:2002		
Na izmenljivi	mmol+/100g	0,04	#	# NF X31-108:2002		
Skupna izmenljiva kislost	mmol+/100g	+/100g 1,00 # Interna metoda (Mehlich-Peech)		Interna metoda (Mehlich-Peech)		
Vsota bazičnih kationov (S)	mmol+/100g	36,41	#	Izračun (Soil Survey Lab.Manual,1992)		
Kationska izm. kapaciteta (T)	mmol+/100g	37,41				
Delež bazičnih kationov (V)	%	97,3	#	Izračun (Soil Survey Lab.Manual,1992)		

N. Ludomer.

mag. Vida Žnidaršič Pongrac, univ.dipl.kem.

Vzorci tal so bili pripravljeni v skladu s standardom SIST ISO 11464:2006, frakcija delcev večjih od 2 mm je bila odstranjena. Rezultati analize se nanašajo izključno na preskušane vzorce. Podani so v zračno suhem vzorcu razen, kjer je pri enoti oznaka s.s., ki pomeni v suhi snovi. Razmnoževanje tega dokumenta ni dovoljeno razen v celoti kot faksimile. Poročilo o preskusu je podano v poenostavljeni obliki. Vse dodatne informacije o preskušanju so na voljo v laboratoriju.

Hacquetova ulica 17, SI-1000 Ljubljana Slovenija/Slovenia T +386 (0)1 280 52 62 | F + 386 (0)1 280 52 55 | E info@kis.si

www.kis.si

TALUM INŠTITUT D.O.O. TOVARNIŠKA CESTA 10 2325 KIDRIČEVO

Ljubljana, 24.7.2020

POROČILO O PRESKUSU št.: 02734/2020

Vzorec:	Zemlja; Številka vzorca: 2020/81198
Analitska številka:	20-02734
Datum prejema vzorca:	2.7.2020
Datum izvajanja preskusa:	od 7.7.2020 do 24.7.2020

REZULTATI ANALIZE:

Parameter	Enota	Rezultat	Referenca
pH v CaCl ₂	-	7,7	ISO 10390:2005
P ₂ O ₅ (dostopni)	mg/100g	1,5 #	ÖNORM L 1087 – mod.
K ₂ O (dostopni)	mg/100g	7,3 #	ÖNORM L 1087 – mod.
Skupni dušik (N)	g/kg s.s.	1,3	ISO 11261:1995 mod.
Organski ogljik (C _{org})	g/kg s.s.	16,1 #	SIST ISO 14235:1999 mod.
Organska snov	%	2,7 #	SIST ISO 14235:1999 mod.
Glina (< 2 µm)	%	16,0 #	ISO 11277:2009 mod.
Fini melj (2 - 20 µm)	%	21,0 #	ISO 11277:2009 mod.
Grobi melj (20 - 50 µm)	%	13,7 #	ISO 11277:2009 mod.
Fini pesek (50 - 200 µm)	%	20,8 #	ISO 11277:2009 mod.
Grobi pesek (200 - 2000 µm)	%	28,5 #	ISO 11277:2009 mod.
Teksturni razred		I #	Ameriška tekst. klasifikacija
Specifična električna prev.	mS/m	11,2 #	ISO 11265:1994

I: ilovica

Vzorci tal so bili pripravljeni v skladu s standardom SIST ISO 11464:2006, frakcija delcev večjih od 2 mm je bila odstranjena. Rezultati analize se nanašajo izključno na preskušane vzorce. Podani so v zračno suhem vzorcu razen, kjer je pri enoti oznaka s.s., ki pomeni v suhi snovi. Razmnoževanje tega dokumenta ni dovoljeno razen v celoti kot faksimile. Poročilo o preskušanje podano v poenostavljeni obliki. Vse dodatne informacije o preskušanju so na voljo v laboratoriju.

POROČILO O PRESKUSU št.: 02734/2020

Parameter	Enota	Rezultat	Referenca		
Ca izmenljivi	mmol+/100g	34,07 #	NF X31-108:2002		
Mg izmenljivi	mmol+/100g	1,52 #	NF X31-108:2002		
K izmenljivi	mmol+/100g	0,18 #	NF X31-108:2002		
Na izmenljivi	mmol+/100g	0,03 #	# NF X31-108:2002		
Skupna izmenljiva kislost	mmol+/100g	0,50 #	# Interna metoda (Mehlich-Peech)		
Vsota bazičnih kationov (S)	mmol+/100g	35,80 #	Izračun (Soil Survey Lab.Manual,1992)		
Kationska izm. kapaciteta (T)	mmol+/100g	36,30 #	Izračun (Soil Survey Lab.Manual,1992)		
Delež bazičnih kationov (V)	%	98,6 #	Izračun (Soil Survey Lab.Manual, 1992		

REZULTATI ANALIZE-nadaljevanje:

N. Zuidoric P.

mag. Vida Žnidaršič Pongrac, univ.dipl.kem.

Vzorci tal so bili pripravljeni v skladu s standardom SIST ISO 11464:2006, frakcija delcev večjih od 2 mm je bila odstranjena. Rezultati analize se nanašajo izključno na preskušane vzorce. Podani so v zračno suhem vzorcu razen, kjer je pri enoti oznaka s.s., ki pomeni v suhi snovi. Razmnoževanje tega dokumenta ni dovoljeno razen v celoti kot faksimile. Poročilo o preskusu je podano v poenostavljeni obliki. Vse dodatne informacije o preskušanju so na voljo v laboratoriju.

CERTIFICATE OF ANALYSIS

Work Order	: PR2063532	Issue Date	: 07-Jul-2020
Customer	: TALUM d.d. Kidricevo		
Client	: TALUM INŠTITUT d.o.o.	Laboratory	: ALS Czech Republic, s.r.o.
Contact	: Marko Homšak	Contact	: Client Service
Address	 Tovarniška cesta 10 2325 Kidričevo Slovenia 	Address	Na Harfe 336/9 Prague 9 - Vysocany 190 00 Czech Republic
E-mail	:	E-mail	: customer.support@alsglobal.com
Telephone	2	Telephone	: +420 226 226 228
Project	: Soil 29.6.2020	Page	: 1 of 10
Order number	: 2020/340	Date Samples Received	: 30-Jun-2020
		Quote number	: PR2018TALDD-SI0001 (CZ-204-18-0284)
Site	:	Date of test	: 01-Jul-2020 - 07-Jul-2020
Sampled by	: client Talum Institut d.o.o.	QC Level	: ALS CR Standard Quality Control Schedule

General Comments

This report shall not be reproduced except in full, without prior written approval from the laboratory.

The laboratory declares that the test results relate only to the listed samples. If the section "Sampled by" of the Certificate of analysis states: "Sampled by Customer" then the results relate to the sample as received.

Responsible for accuracy

<u>Signatories</u> Zdeněk Jirák

Position Environmental Business Unit Manager Testing Laboratory No. 1163 Accredited by CAI according to CSN EN ISO/IEC 17025:2018

Analytical Results

Sub-Matrix: SOIL		Cli	ent sample ID	2020/81	190	2020/81	191	2020/811	192
		Laborate	ory sample ID	PR2063532-001		PR206353	2-002	PR2063532-003	
	(ing date / time	24-Jun-2	020	24-Jun-20	020	24-Jun-20	020
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
					1				
Physical Parameters Laboratory compacted bulk	S-LCBD-GR	100	g/L	890	± 15.0%	990	± 15.0%	880	± 15.0%
density	0-2000-011		3-						
Dry matter @ 105°C	S-DRY-GRCI	0.10	%	84.1	± 6.0%	84.3	± 6.0%	84.8	± 6.0%
Extractable Metals / Major Cation							i i i i i i i i i i i i i i i i i i i		
Cadmium	S-METMSHB1	0.050	mg/kg DW	0.220	± 20.0%	0.248	± 20.0%	0.202	± 20.0%
Mercury	S-HG-AFSHB	0.010	mg/kg DW	0.103	± 20.0%	0.277	± 20.0%	0.094	± 20.0%
Total Petroleum Hydrocarbons				1					
C10 - C21 Fraction	S-TPHFID11	5	mg/kg DW	<5		<5	[<5	
C21 - C40 Fraction	S-TPHFID11	5	mg/kg DW	14.5		10.0		11.5	
C10 - C40 Fraction	S-TPHFID11	10	mg/kg DW	17.1		12.3		13.4	·
BTEX									
Benzene	S-VOCGMS01	0.010	mg/kg DW	<0.010	[<0.010		<0.010	
Toluene	S-VOCGMS01	0.030	mg/kg DW	<0.030	[<0.030		<0.030	
Ethylbenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020	[<0.020		<0.020	
meta- & para-Xylene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020	[<0.020	
ortho-Xylene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Sum of BTEX	S-VOCGMS01	0.090	mg/kg DW	<0.090	[<0.090		<0.090	
Sum of xylenes	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030	[<0.030	
Polycyclic Aromatics Hydrocarbo	ons (PAHs)								
Naphthalene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010	[<0.010	
Acenaphthylene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Acenaphthene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Fluorene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Phenanthrene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010	[0.010	± 30.0%
Anthracene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Fluoranthene	S-PAHGMS05	0.010	mg/kg DW	0.015	± 30.0%	0.021	± 30.0%	0.081	± 30,0%
Pyrene	S-PAHGMS05	0.010	mg/kg DW	0.010	± 30,0%	0.013	± 30.0%	0.062	± 30.0%
Benz(a)anthracene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Chrysene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010		0.012	± 30.0%
Benzo(b)fluoranthene	S-PAHGMS05	0.010	mg/kg DW	0.014	± 30.0%	0.010	± 30.0%	0.016	± 30.0%
Benzo(k)fluoranthene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(a)pyrene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010	[<0.010	
Indeno(1.2.3.cd)pyrene	S-PAHGMS05	0.010	mg/kg DW	<0,010		<0.010		<0.010	
Dibenz(a.h)anthracene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(g.h.i)perylene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0,010		<0.010	
Sum of 16 PAH	S-PAHGMS05	0.160	mg/kg DW	<0.160		<0.160		0.181	
PCBs									
PCB 28	S-PCBGMS05	0.0030	mg/kg DW	<0.0030		<0.0030		<0,0030	
PCB 52	S-PC8GMS05	0.0030	mg/kg DW	< 0.0030		<0.0030		<0.0030	
PCB 101	S-PCBGMS05	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 118	S-PCBGMS05	0.0030	mg/kg DW	<0,0030		<0.0030		<0.0030	
PCB 138	S-PCBGMS05	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 153	S-PCBGMS05	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 180	S-PCBGMS05	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
Sum of 6 PCBs	S-PCBGMS05	0.0180	mg/kg DW	<0.0180		<0.0180		<0.0180	
Sum of 7 PCBs	S-PCBGMS05	0.0210	mg/kg DW	<0.0210		<0.0210		<0.0210	
Organochlorine Pesticides									
Chlordane-cis	S-OCPECD04	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Chlordane-trans	S-OCPECD04	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Endosulfan sulfate	S-OCPECD04	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Mirex	S-OCPECD04	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Nonachlor-cis	S-OCPECD04	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Nonachlor-trans	S-OCPECD04	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Oxychlordane	S-OCPECD04	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Hexachloroethane	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Hexachlorobutadiene	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	

Sub-Matrix: SOIL		Cl	ient sample ID	2020/81	190	2020/811	91	2020/811	92
		Laboratory sample ID		PR2063532-001		PR2063532-002		PR2063532-003	
		Client sampling date / time		24-Jun-2020		24-Jun-2020		24-Jun-2020	
Parameter	Method	LOR	Unit	Result	MŲ	Result	MU	Result	MU
Organochlorine Pesticides - Continu	led				20 X 14 - 1				
1.2.3.5- &	S-OCPECD01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
1.2.4.5-Tetrachlorobenzene									
1.2.3.4-Tetrachlorobenzene	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Pentachlorobenzene	S-OCPECD01	0,010	mg/kg DW	<0.010		<0.010		<0.010	
Trifluralin	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Hexachlorocyclohexane Alpha	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010	·	<0.010	
Hexachlorobenzene (HCB)	S-OCPECD01	0.0050	mg/kg DW	<0.0050		<0.0050		<0.0050	
Hexachlorocyclohexane Beta	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Hexachlorocyclohexane Gamma	S-OCPECD01	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Hexachlorocyclohexane Deita	S-OCPECD01	0.010	mg/kg DW	<0.010		<0,010		<0.010	****
Hexachlorocyclohexane Epsilon	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Alachior	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Heptachlor	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Aldrin Telodrin	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
leiodrin	S-OCPECD01	0.010	mg/kg DW	<0.010 <0.010		<0.010		<0.010	
Heptachloroepoxide-cis	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Heptachloroepoxide-trans	S-OCPECD01 S-OCPECD01	0.010	mg/kg DW mg/kg DW	<0.010		<0.010		<0.010	
2.4-DDE	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
alpha-Endosulfan	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
4.4'-DDE	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Dieldrin	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
2.4-DDD	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Endrin	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0,010	
beta-Endosulfan	S-OCPECD01	0.010	mg/kg DW	< 0.010		<0.010		<0.010	
4.4`-DDD	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
2.4-DDT	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010	·	<0.010	
4.4`-DDT	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Methoxychlor	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Sum of 3 tetrachlorobenzenes	S-OCPECD01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
Sum of 4 hexachlorcyclohexanes	S-OCPECD01	0.0400	mg/kg DW	<0.0400	1	<0.0400		<0.0400	
Sum of 4 isomers DDT	S-OCPECD01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
Sum of 6 isomers DDT	S-OCPECD01	0.060	mg/kg DW	<0.060		<0.060		<0.060	
Pesticides	in the second				STOCKLE				
Acetochlor	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Alachlor	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Ametryn	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Atrazine	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100	-	<0.0100	
Atrazine-2-hydroxy	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Atrazine-desethyl	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Atrazine-desisopropyl	S-PESLMSB1	0,0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Carbofuran	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Chlorfenvinphos	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Chlorotoluron Chlorpyrifos	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Cyanazine	S-PESLMSB1	0.0100	mg/kg DW mg/kg DW	<0.0100		<0.0100		<0.0100	
Desmetryn	S-PESLMSB1 S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Dimethoate		0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Diuron	S-PESLMSB1 S-PESLMSB1	0.0100	mg/kg DW mg/kg DW	<0.0100		<0.0100		<0.0100	
Fonofos	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Hexazinone	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Isoproturon	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Malathion	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0,0100	
Metamitron	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Metazachlor	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Methidathion	S-PESLMS81	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Metolachlor (isomers)	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
		0.0100	mg/kg DW						

Sub-Matrix: SOIL		Cli	ent sample ID	2020/811	90	2020/8119	91	2020/811	92
		Laborate	ory sample ID	PR2063532	-001	PR2063532-	002	PR2063532	-003
	C	lient sampli	ing date / time	24-jun-20	20	24-Jun-202	20	24-Jun-20	20
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Pesticides - Continued									
Pendimethalin	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Phorate	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	****
Phosalone	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0,0100]	<0.0100	
Phosphamidon	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Prometon	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Prometryn	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	*
Propazine	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Sebuthylazine	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100	n	<0.0100	
Simazine	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Simetryn	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Terbuthylazine	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Terbuthylazine-desethyl	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Terbuthylazine-hydroxy	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Terbutryn	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
PBBs			2.50.200		a da da				
PBB 153	S-OCPECD04	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Sample Preparation					Ser State				
Amount	S-PEXT42	0.1	g	20.01		19.97		20.00	

Sub-Matrix: SOIL		Clie	ent sample ID	2020/81	193	2020/81	195	2020/811	96
		Laborate	ory sample ID	PR206353.	2-004	PR206353	2-005	PR206353	2-006
	c	lient sampli	ng date / time	24-Jun-2020		24-Jun-2020		24-Jun-2	020
Parameter	Method	LOR	Unit	Result	MU	Result	ми	Result	MU
Physical Parameters								<u>, , , , , , , , , , , , , , , , , , , </u>	
Laboratory compacted bulk	S-LCBD-GR	100	g/L	990	± 15.0%	900	± 15.0%	1000	± 15.0%
density									
Dry matter @ 105°C	S-DRY-GRCI	0.10	%	84.9	± 6.0%	84.7	± 6.0%	86.4	± 6.0%
Extractable Metals / Major Cations	s		S Strengthe				a -		
Cadmium	S-METMSHB1	0.050	mg/kg DW	0.183	± 20.0%	0.253	± 20.0%	0.245	± 20.0%
Мегсигу	S-HG-AFSHB	0.010	mg/kg DW	0.108	± 20.0%	0.128	± 20.0%	0.589	± 20.0%
Total Petroleum Hydrocarbons							-		
C10 - C21 Fraction	S-TPHFID11	5	mg/kg DW	<5		7.4		8.1	
C21 - C40 Fraction	S-TPHFID11	5	mg/kg DW	8.0		15.9		28.8	
C10 - C40 Fraction	S-TPHFID11	10	mg/kg DW	<10		23.4		36.9	
BTEX							, s		
Benzene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Toluene	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
Ethylbenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
meta- & para-Xylene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020		<0.020	
ortho-Xylene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Sum of BTEX	S-VOCGMS01	0.090	mg/kg DW	<0.090		<0.090		<0.090	
Sum of xylenes	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
Polycyclic Aromatics Hydrocarbo	ons (PAHs)								
Naphthalene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010	****	<0.010	
Acenaphthylene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010	****	<0.010	
Acenaphthene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Fluorene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Phenanthrene	S-PAHGMS05	0.010	mg/kg DW	<0.010		0.011	± 30.0%	<0.010	
Anthracene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010		<0.010	*
Fluoranthene	S-PAHGMS05	0.010	mg/kg DW	0.024	± 30.0%	0.026	± 30.0%	0.011	± 30.0%
Pyrene	S-PAHGMS05	0.010	mg/kg DW	0.017	± 30.0%	0.018	± 30.0%	<0.010	
Benz(a)anthracene	S-PAHGMS05	0.010	mg/kg DW	<0,010		<0.010		<0.010	
Chrysene	S-PAHGMS05	0.010	mg/kg DW	0.011	± 30.0%	0.015	± 30.0%	<0.010	
Benzo(b)fluoranthene	S-PAHGMS05	0.010	mg/kg DW	0.033	± 30.0%	0.022	± 30.0%	<0.010	
Benzo(k)fluoranthene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010		<0.010	·
Benzo(a)pyrene	S-PAHGMS05	0.010	mg/kg DW	<0.010		0.011	± 30.0%	<0.010	
Indeno(1.2.3.cd)pyrene	S-PAHGMS05	0.010	mg/kg DW	0.030	± 30.0%	<0.010		<0.010	

Sub-Matrix: SOIL		Cli	ient sample ID	2020/811	93	2020/811	95	2020/811	96
		Laborat	ory sample ID	PR2063532	2-004	PR2063532	-005	PR2063532	-006
	(Client sampli	ing date / time	24-Jun-20)20	24-Jun-20	20	24-Jun-20	20
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Polycyclic Aromatics Hydrocarbons	(PAHs) - Continued						9		
Dibenz(a.h)anthracene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Benzo(g.h.i)perylene	S-PAHGMS05	0.010	mg/kg DW	0.046	± 30.0%	<0.010		<0.010	
Sum of 16 PAH	S-PAHGMS05	0.160	mg/kg DW	0.161		<0.160		<0.160	
PCBs									
PCB 28	S-PCBGMS05	0.0030	mg/kg DW	<0.0030		<0.0030		< 0.0030	
PCB 52	S-PCBGMS05	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 101	S-PCBGMS05	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 118	S-PCBGMS05	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
PCB 138	S-PCBGMS05	0.0030	mg/kg DW	<0,0030		<0,0030	[<0.0030	
PCB 153	S-PCBGMS05	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	****
PCB 180	S-PCBGMS05	0.0030	mg/kg DW	<0.0030		<0.0030		<0.0030	
Sum of 6 PCBs	S-PCBGMS05	0.0180	mg/kg DW	<0.0180		<0.0180		<0.0180	
Sum of 7 PCBs	S-PCBGMS05	0.0210	mg/kg DW	<0.0210]	<0.0210		<0.0210	
Organochlorine Pesticides					est de la		ı		
Chlordane-cis	S-OCPECD04	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Chlordane-trans	S-OCPECD04	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Endosulfan sulfate	S-OCPECD04	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Mirex	S-OCPECD04	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Nonachlor-cis	S-OCPECD04	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Nonachlor-trans	S-OCPECD04	0.010	mg/kg DW						
Oxychlordane	S-OCPECD04	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Hexachloroethane	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Hexachlorobutadiene	S-OCPECD01	0.010	mg/kg DW mg/kg DW	<0.010		<0.010		<0.010	
1.2.3.5- &	S-OCPECD01	0.020	nig/kg DVV	<0.020		<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>		NU.020	••••
1.2.4.5-Tetrachlorobenzene 1.2.3.4-Tetrachlorobenzene		0.010	mg/kg DW	<0.010		<0.010		<0,010	
Pentachlorobenzene	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Trifluralin	S-OCPECD01 S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Hexachlorocyclohexane Alpha	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Hexachlorobenzene (HCB)	S-OCPECD01	0,0050	mg/kg DW	< 0.0050		<0.0050		<0.0050	
Hexachlorocyclohexane Beta	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Hexachlorocyclohexane Gamma	S-OCPECD01	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Hexachlorocyclohexane Delta	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Hexachlorocyclohexane Epsilon	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Alachlor	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Heptachlor	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Aldrin	S-OCPECD01	0.010	mg/kg DW	<0.010		<0,010		<0.010	
Telodrin	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Isodrin	S-OCPECD01	0.010	mg/kg DW	<0,010	•	<0.010		<0.010	
Heptachloroepoxide-cis	S-OCPECD01	0,010	mg/kg DW	<0.010		<0.010		<0.010	F-07
Heptachloroepoxide-trans	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
2.4-DDE	S-OCPECD01	0.010	mg/kg DW	<0.010		<0,010		<0.010	
alpha-Endosulfan	S-OCPECD01	0.010	mg/kg DW	. <0.010		<0.010]	<0.010	
4.4`-DDE	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
Dieldrin	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
2.4-DDD	S-OCPECD01	0.010	mg/kg DW	<0,010		<0.010		<0.010	
Endrin	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
beta-Endosulfan	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0.010	
4.4`-DDD	S-OCPECD01	0.010	mg/kg DW	<0,010		<0.010		<0.010	
2.4-DDT	S-OCPECD01	0,010	mg/kg DW	<0.010		<0.010		<0.010	*****
4.4`-DDT	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		<0,010	
Methoxychlor	S-OCPECD01	0.010	mg/kg DW	<0.010		<0,010		<0.010	
Sum of 3 tetrachlorobenzenes	S-OCPECD01	0.030	mg/kg DW	<0.030		<0.030		<0.030	
Sum of 4 hexachlorcyclohexanes	S-OCPECD01	0.0400	mg/kg DW	<0.0400		<0.0400		<0.0400	
Sum of 4 isomers DDT	S-OCPECD01	0.040	mg/kg DW	<0.040		<0.040		<0.040	
Sum of 6 isomers DDT	S-OCPECD01	0.060	mg/kg DW	<0,060		<0.060		<0.060	****
Pesticides									
Acetochlor	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	

Sub-Matrix: SOIL		Cli	ent sample ID	2020/811	93	2020/811	95	2020/811	96
		Laborat	ory sample ID	PR2063532	-004	PR2063532	-005	PR2063532	-006
	C	Client sampl	ing date / time	24-Jun-20	20	24-Jun-20	20	24-Jun-20	20
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Pesticides - Continued					an Al-Maria		1		
Alachlor	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100	****	<0.0100	
Ametryn	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Atrazine	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Atrazine-2-hydroxy	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Atrazine-desethyl	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Atrazine-desisopropyl	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Carbofuran	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Chlorfenvinphos	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	****
Chlorotoluron	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	·
Chlorpyrifos	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Cyanazine	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Desmetryn	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Dimethoate	S-PESLMSB1	0.0100	mg/kg DW	<0.0100	A = 1.4	<0.0100		<0.0100	
Diuron	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Fonofos	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Hexazinone	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Isoproturon	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Malathion	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Metamitron	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Metazachlor	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Methidathion	S-PESLMS81	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Metolachlor (isomers)	S-PESLMSB1	0.0100	mg/kg DW	<0.0100	4	<0.0100	••••	<0.0100	
Metribuzin	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Pendimethalin	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Phorate	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0,0100		<0.0100	
Phosalone	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0,0100	
Phosphamidon	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Prometon	S-PESLMSB1	0.0100	mg/kg DW	<0,0100		<0,0100	}	<0.0100	
Prometryn	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	****
Propazine	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Sebuthylazine	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Simazine	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		< 0.0100	
Simetryn	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Terbuthylazine	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Terbuthylazine-desethyl	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		< 0.0100	
Terbuthylazine-hydroxy	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		<0.0100	
Terbutryn	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0,0100		<0.0100	
PBBs		0.010			0.0400 (40.242		40.040	
PBB 153	S-OCPECD04	0.010	mg/kg DW	<0.010	 800%360%36388/****	<0,010		<0.010	
Sample Preparation		0.1		00.07	1	an 40		40.05	
Amount	S-PEXT42	0.1	9	20.27		20.10		19.85	

Sub-Matrix: SOIL		Clie	ent sample ID	2020/81	197	2020/81	198		A CONTRACTOR OF TAXABLE
		Laborate	ory sample ID	PR206353.	2-007	PR206353	2-008		
	C	lient sampli	ng date / time	24-Jun-2	020	24-Jun-2	020		
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Physical Parameters							1		
Laboratory compacted bulk	S-LCBD-GR	100	g/L	910	± 15.0%	1030	± 15.0%		
density									
Dry matter @ 105°C	S-DRY-GRCI	0.10	%	82.2	±6.0%	75.8	± 6.0%		
Extractable Metals / Major Cation	S								
Cadmium	S-METMSHB1	0.050	mg/kg DW	0.204	± 20.0%	0.178	± 20.0%		
Mercury	S-HG-AFSHB	0.010	mg/kg DW	0.180	± 20.0%	0.113	± 20.0%		
Total Petroleum Hydrocarbons					all services and				
C10 - C21 Fraction	S-TPHFID11	5	mg/kg DW	<5		<5			
C21 - C40 Fraction	S-TPHFID11	5	mg/kg DW	26.1	[17.1			

Sub-Matrix: SOIL		Cli	ent sample ID	2020/811	197	2020/811	198		
		Laborate	ory sample ID	PR2063533	2-007				
		Client sampli	ng date / time	24-Jun-20	020	24-jun-2(020		
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Total Petroleum Hydrocarbons - Continu	ied				-020500		·		
C10 - C40 Fraction	S-TPHFID11	10	mg/kg DW	30.3		22.1			
BTEX					5 - E - S				
Benzene	S-VOCGMS01	0.010	mg/kg DW	<0.010		<0.010			
Toluene	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030			
Ethylbenzene	S-VOCGMS01	0.020	mg/kg DW	<0.020	****	<0.020			
meta- & para-Xylene	S-VOCGMS01	0.020	mg/kg DW	<0.020		<0.020			
ortho-Xylene	S-VOCGMS01	0.010	mg/kg DW	<0,010		<0.010			
Sum of BTEX	S-VOCGMS01	0,090	mg/kg DW	<0.090		<0.090			
Sum of xylenes	S-VOCGMS01	0.030	mg/kg DW	<0.030		<0.030			
Polycyclic Aromatics Hydrocarbons (P)	AHs)								
Naphthalene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010			
Acenaphthylene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010			
Acenaphthene	S-PAHGMS05	0,010	mg/kg DW	<0.010		<0.010			
Fluorene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010			
Phenanthrene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010			
Anthracene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010			
Fluoranthene	S-PAHGMS05	0.010	mg/kg DW	0.029	± 30.0%	0.042	± 30.0%		
Pyrene Pyrene	S-PAHGMS05	0.010	mg/kg DW mg/kg DW	0.022 <0.010	± 30.0%	0.037	± 30.0%		
Benz(a)anthracene	S-PAHGMS05	0.010	mg/kg DW	0.021	± 30.0%	0.023	± 30.0% ± 30.0%		
Chrysene	S-PAHGMS05	0.010	mg/kg DW	0.021	± 30.0%	0.031	± 30.0%		
Benzo(b)fluoranthene	S-PAHGMS05	0.010	mg/kg DW	<0.024	± 30.0%	0.037	± 30.0%		
Benzo(k)fluoranthene Benzo(a)pyrene	S-PAHGMS05 S-PAHGMS05	0.010	mg/kg DW	0.010	± 30.0%	0.020	± 30.0%		
Indeno(1.2.3.cd)pyrene	S-PAHGMS05	0.010	mg/kg DW	<0.010	1 30.070	0.011	± 30,0%		
Dibenz(a.h)anthracene	S-PAHGMS05	0.010	mg/kg DW	<0.010		<0.010			
Benzo(g.h.i)perylene	S-PAHGMS05	0.010	mg/kg DW	<0.010		0.012	± 30.0%		
Sum of 16 PAH	S-PAHGMS05	0.160	mg/kg DW	<0,160		0.224			
					1995 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				
PCBs PCB 28	S-PCBGMS05	0.0030	mg/kg DW	<0,0030		<0.0030			
	S-PCBGMS05 S-PCBGMS05	0.0030	mg/kg DW mg/kg DW			<0.0030 <0.0030			
PCB 28				<0,0030					
PCB 28 PCB 52	S-PCBGMS05	0.0030	mg/kg DW	<0,0030 <0.0030		<0.0030			
PCB 28 PCB 52 PCB 101	S-PCBGMS05 S-PCBGMS05	0.0030	mg/kg DW mg/kg DW	<0,0030 <0.0030 <0.0030		<0.0030 <0.0030			
PCB 28 PCB 52 PCB 101 PCB 118	S-PCBGMS05 S-PCBGMS05 S-PCBGMS05	0.0030 0.0030 0.0030	mg/kg DW mg/kg DW mg/kg DW	<0,0030 <0.0030 <0.0030 <0.0030	 	<0.0030 <0.0030 <0.0030			
PCB 28 PCB 52 PCB 101 PCB 118 PCB 138	S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05	0.0030 0.0030 0.0030 0.0030	mg/kg DW mg/kg DW mg/kg DW mg/kg DW	<0.0030 <0.0030 <0.0030 <0.0030 <0.0030	 	<0.0030 <0.0030 <0.0030 <0.0030	 		
PCB 28 PCB 52 PCB 101 PCB 118 PCB 138 PCB 153	S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05	0.0030 0.0030 0.0030 0.0030 0.0030	mg/kg DW mg/kg DW mg/kg DW mg/kg DW mg/kg DW	<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030	 	<0.0030 <0.0030 <0.0030 <0.0030 <0.0030	 	 	
PCB 28 PCB 52 PCB 101 PCB 118 PCB 138 PCB 153 PCB 180	S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05	0.0030 0.0030 0.0030 0.0030 0.0030 0.0030	mg/kg DW mg/kg DW mg/kg DW mg/kg DW mg/kg DW	<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030		<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030	 	 	
PCB 28 PCB 52 PCB 101 PCB 118 PCB 138 PCB 153 PCB 153 PCB 180 Sum of 6 PCBs Sum of 7 PCBs Organochlorine Pesticides	S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05	0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0180 0.0210	mg/kg DW mg/kg DW mg/kg DW mg/kg DW mg/kg DW mg/kg DW mg/kg DW	<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210		<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210	 	 	
PCB 28 PCB 52 PCB 101 PCB 118 PCB 138 PCB 153 PCB 180 Sum of 6 PCBs Sum of 7 PCBs Organochlorine Pesticides Chlordane-cis	S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05	0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0180 0.0210	mg/kg DW mg/kg DW mg/kg DW mg/kg DW mg/kg DW mg/kg DW mg/kg DW	<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010		<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010	 		
PCB 28 PCB 52 PCB 101 PCB 118 PCB 138 PCB 153 PCB 180 Sum of 6 PCBs Sum of 7 PCBs Organochlorine Pesticides Chlordane-cis Chlordane-trans	S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-OCPECD04 S-OCPECD04	0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0180 0.0210 0.010	mg/kg DW mg/kg DW mg/kg DW mg/kg DW mg/kg DW mg/kg DW mg/kg DW mg/kg DW mg/kg DW	<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010 <0.010		<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010 <0.010	 	 	
PCB 28 PCB 52 PCB 101 PCB 118 PCB 138 PCB 153 PCB 180 Sum of 6 PCBs Sum of 7 PCBs Organochlorine Pesticides Chlordane-cis Chlordane-trans Endosulfan sulfate	S-PCBGMS05 S-OCPECD04 S-OCPECD04 S-OCPECD04	0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0180 0.0210 0.010 0.010 0.010	mg/kg DW mg/kg DW mg/kg DW mg/kg DW mg/kg DW mg/kg DW mg/kg DW mg/kg DW mg/kg DW mg/kg DW	<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010 <0.010 <0.010		<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010 <0.010 <0.010	 	 	
PCB 28 PCB 52 PCB 101 PCB 118 PCB 138 PCB 153 PCB 180 Sum of 6 PCBs Sum of 7 PCBs Organochlorine Pesticides Chlordane-cis Chlordane-trans Endosulfan sulfate Mirex	S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04	0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0180 0.0210 0.010 0.010 0.010	mg/kg DW mg/kg DW	<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 C.010 <0.010 <0.010 <0.010 <0.010		<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010 <0.010 <0.010 <0.010	 	 	
PCB 28 PCB 52 PCB 101 PCB 118 PCB 138 PCB 153 PCB 180 Sum of 6 PCBs Sum of 7 PCBs Organochlorine Pesticides Chlordane-cis Chlordane-trans Endosulfan sulfate Mirex Nonachlor-cis	S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04	0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0180 0.0210 0.010 0.010 0.010 0.010 0.010	mg/kg DW mg/kg DW	<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210		<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	 		
PCB 28 PCB 52 PCB 101 PCB 118 PCB 133 PCB 153 PCB 180 Sum of 6 PCBs Sum of 7 PCBs Organochlorine Pesticides Chlordane-cis Chlordane-trans Endosulfan sulfate Mirex Nonachlor-cis Nonachlor-trans	S-PCBGMS05 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04	0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0180 0.0210 0.010 0.010 0.010 0.010 0.010 0.010	mg/kg DW mg/kg DW	<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010		<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	 	 	
PCB 28PCB 28PCB 52PCB 101PCB 118PCB 138PCB 153PCB 160Sum of 6 PCBsSum of 7 PCBsOrganochlorine PesticidesChlordane-cisChlordane-transEndosulfan sulfateMirexNonachlor-cisNonachlor-transOxychlordane	S-PCBGMS05 S-OCPECD04	0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0180 0.0210 0.010 0.010 0.010 0.010 0.010 0.010 0.010	mg/kg DW mg/kg DW	<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010		<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	 		
PCB 28 PCB 52 PCB 101 PCB 118 PCB 133 PCB 153 PCB 180 Sum of 6 PCBs Sum of 7 PCBs Organochlorine Pesticidos Chlordane-cis Chlordane-trans Endosulfan sulfate Mirex Nonachlor-cis Nonachlor-trans Oxychlordane Hexachloroethane	S-PCBGMS05 S-OCPECD04	0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0180 0.0210 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	mg/kg DW mg/kg DW	<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010		<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	 		
PCB 28PCB 52PCB 101PCB 118PCB 138PCB 153PCB 153PCB 160Sum of 6 PCBsSum of 7 PCBsOrganochlorine PesticidesChlordane-cisChlordane-transEndosulfan sulfateMirexNonachlor-cisNonachlor-transOxychlordaneHexachloroethaneHexachlorobutadiene	S-PCBGMS05 S-OCPECD04 S-OCPECD01 S-OCPECD01	0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0180 0.0210 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	mg/kg DW mg/kg DW	<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010		<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	 		
PCB 28PCB 52PCB 101PCB 118PCB 138PCB 153PCB 153PCB 160Sum of 6 PCBsSum of 7 PCBsOrganochlorine PesticidesChlordane-cisChlordane-transEndosulfan sulfateMirexNonachlor-cisNonachlor-cisNonachlor-transOxychlordaneHexachlorobutadiene1.2.3.5- &	S-PCBGMS05 S-OCPECD04	0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0180 0.0210 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	mg/kg DW mg/kg DW	<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010		<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	 		
PCB 28 PCB 52 PCB 101 PCB 118 PCB 138 PCB 153 PCB 1	S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD01 S-OCPECD01 S-OCPECD01	0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0180 0.0210 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.020	mg/kg DW mg/kg DW	<0,0030 <0,0030 <0,0030 <0,0030 <0,0030 <0,0030 <0,0180 <0,0180 <0,0210 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010		<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	 		
PCB 28 PCB 52 PCB 101 PCB 118 PCB 138 PCB 138 PCB 153 PCB 153 PCB 153 PCB 153 PCB 160 Sum of 6 PCBs Sum of 7 PCBs Organochlorine Pesticides Chiordane-cis Chiordane-cis Chiordane-trans Endosulfan sulfate Mirex Nonachlor-cis Nonachlor-cis Nonachlor-cis Nonachlor-cis Nonachlor-trans Oxychlordane Hexachlorobutadiene 1.2.3.5- & 1.2.4.5-Tetrachlorobenzene 1.2.3.4-Tetrachlorobenzene	S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD01 S-OCPECD01 S-OCPECD01	0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0180 0.0210 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.020	mg/kg DW mg/kg DW	<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010		<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.020 <0.010	 		
PCB 28PCB 52PCB 101PCB 118PCB 138PCB 153PCB 153PCB 160Sum of 6 PCBsSum of 7 PCBsOrganochlorine PesticidesChlordane-cisChlordane-transEndosulfan sulfateMirexNonachlor-cisNonachlor-cisNonachlor-transOxychlordaneHexachlorobutadiene1.2.3.5- &1.2.4.5-Tetrachlorobenzene1.2.3.4-TetrachlorobenzenePentachlorobenzene	S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD01 S-OCPECD01 S-OCPECD01 S-OCPECD01	0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0180 0.0210 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.020	mg/kg DW mg/kg DW	<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.020 <0.010 <0.020		<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	 		
PCB 28 PCB 52 PCB 101 PCB 118 PCB 138 PCB 138 PCB 153 PCB 153 PCB 153 PCB 153 PCB 153 PCB 153 PCB 153 PCB 160 Sum of 6 PCBs Sum of 7 PCBs Organochlorine Pesticides Chiordane-cis Chiordane-cis Chiordane-trans Endosulfan sulfate Mirex Nonachlor-cis Nonachlor-cis Nonachlor-cis Nonachlor-cis Nonachlor-trans Oxychlordane Hexachlorobutadiene 1.2.3.5-& 1.2.4.5-Tetrachlorobenzene 1.2.3.4-Tetrachlorobenzene Pentachlorobenzene Trifluralin	S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD01 S-OCPECD01 S-OCPECD01 S-OCPECD01 S-OCPECD01	0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0180 0.0210 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.020 0.010 0.020	mg/kg DW mg/kg DW	<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0180 <0.0210 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.020 <0.010 <0.010 <0.020		<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.020 <0.010 <0.020	 		
PCB 28PCB 52PCB 101PCB 118PCB 138PCB 153PCB 153PCB 160Sum of 6 PCBsSum of 7 PCBsOrgenochlorine PesticidesChlordane-cisChlordane-transEndosulfan sulfateMirexNonachlor-cisNonachlor-cisOxychlordaneHexachlorobutadiene1.2.3.5-&1.2.4.5-Tetrachlorobenzene1.2.3.4-TetrachlorobenzenePentachlorobenzeneTrifluralinHexachlorocyclohexane Alpha	S-PCBGMS05 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD01 S-OCPECD01 S-OCPECD01 S-OCPECD01 S-OCPECD01 S-OCPECD01 S-OCPECD01 S-OCPECD01	0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0180 0.0210 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.020 0.010 0.020	mg/kg DW mg/kg DW	<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0180 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010		<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.020 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010			
PCB 28PCB 52PCB 101PCB 118PCB 138PCB 153PCB 153PCB 160Sum of 6 PCBsSum of 7 PCBsOrganochlorine PesticidesChlordane-cisChlordane-transEndosulfan sulfateMirexNonachlor-cisNonachlor-transOxychlordaneHexachlorobutadiene1.2.3.5-&1.2.3.5-&1.2.3.4-TetrachlorobenzenePentachlorobenzeneTrifluralinHexachlorocyclohexane AlphaHexachlorobenzene (HCB)	S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCBGMS05 S-PCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD01 S-OCPECD01 S-OCPECD01 S-OCPECD01 S-OCPECD01 S-OCPECD01 S-OCPECD01 S-OCPECD01 S-OCPECD01 S-OCPECD01	0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0180 0.0210 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.020 0.010 0.020	mg/kg DW mg/kg DW	<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0180 <0.0210 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.020 <0.010 <0.010 <0.020		<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.020 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010			
PCB 28PCB 52PCB 101PCB 118PCB 138PCB 153PCB 153PCB 160Sum of 6 PCBsSum of 7 PCBsOrgenochlorine PesticidesChlordane-cisChlordane-transEndosulfan sulfateMirexNonachlor-cisNonachlor-transOxychlordaneHexachlorobutadiene1.2.3.5-&1.2.4.5-TetrachlorobenzenePentachlorobenzeneTrifluralinHexachlorocyclohexane AlphaHexachlorocyclohexane Beta	S-PCBGMS05 S-PCBCD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD01	0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0180 0.0210 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.020 0.010 0.020	mg/kg DW mg/kg DW	<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.020 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000000		<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.020 <0.010 <0.020 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010			
PCB 28PCB 52PCB 101PCB 118PCB 138PCB 153PCB 160Sum of 6 PCBsSum of 7 PCBsOrganochlorine PesticidesChlordane-cisChlordane-transEndosulfan sulfateMirexNonachlor-cisPersonHexachlorobenzeneTrifluralinHexachlorocyclohexane AlphaHexachlorocyclohexane BetaHexachlorocyclohexane Gamma	S-PCBGMS05 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD01 S-OCPECD01	0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0180 0.0210 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.020 0.010 0.020 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	mg/kg DW mg/kg DW	<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0180 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010		<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.020 <0.010 <0.010 <0.020 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <			
PCB 28PCB 52PCB 101PCB 118PCB 138PCB 153PCB 153PCB 160Sum of 6 PCBsSum of 7 PCBsOrganochlorine PesticidesChlordane-cisChlordane-transEndosulfan sulfateMirexNonachlor-transOxychlordaneHexachlorobutadiene1.2.3.5-&1.2.3.5-&1.2.3.4-TetrachlorobenzenePentachlorobenzeneTrifluralinHexachlorobenzene (HCB)Hexachlorocyclohexane Beta	S-PCBGMS05 S-PCBCD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD04 S-OCPECD01	0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0180 0.0210 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.020 0.010 0.020 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	mg/kg DW mg/kg DW	<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0180 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <		<0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0030 <0.0180 <0.0210 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.020 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010			

www.alsglobal.eu

Sub-Matrix: SOIL		Clie	ent sample ID	2020/811	97	2020/811	98		
		Laborato	ory sample ID	PR2063532	-007	PR2063532-	-008		
	С	Client sampling date / time		24-Jun-2020		24-Jun-2020			
Parameter	Method	LOR	Unit	Result	MU	Result	MU	Result	MU
Organochlorine Pesticides - Contin	uad						·		umahi////
Alachlor	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010			
Heptachlor	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010	[
Aldrin	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010			
Telodrin	S-OCPECD01	0,010	mg/kg DW	<0.010		<0.010			
Isodrin	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010		B-877 N	
Heptachloroepoxide-cis	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010			
Heptachloroepoxide-trans	S-OCPECD01	0.010	mg/kg DW	<0,010		<0.010			
2.4-DDE	S-OCPECD01	0,010	mg/kg DW	<0.010		<0.010	·		
alpha-Endosulfan	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010			
4.4'-DDE	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010			
		0.010	mg/kg DW	<0.010		<0,010			
Dieldrin	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010			
2.4-DDD	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010			
Endrin	S-OCPECD01	0.010	mg/kg DW	<0,010		<0.010			
beta-Endosulfan	S-OCPECD01	0.010	mg/kg DW	<0.010		<0.010			
4.4'-DDD	S-OCPECD01	0.010	mg/kg DW mg/kg DW	<0.010		<0.010			
2.4-DDT	S-OCPECD01	0.010	mg/kg DW mg/kg DW	<0.010		<0.010			
4.4`-DDT	S-OCPECD01	0,010	mg/kg DW mg/kg DW	<0.010		<0.010			
Methoxychlor	S-OCPECD01			<0.030		<0.030			
Sum of 3 tetrachlorobenzenes	\$-OCPECD01	0.030	mg/kg DW mg/kg DW	<0.030		<0.0400			
Sum of 4 hexachlorcyclohexanes	S-OCPECD01	0.0400		<0.0400		<0.040			
Sum of 4 isomers DDT	S-OCPECD01	0.040	mg/kg DW			<0.040			
Sum of 6 isomers DDT	S-OCPECD01	0.060	mg/kg DW	<0.060		~0.000	[
Pesticides							1		
Acetochlor	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Alachlor	S-PESLMSB1	0.0100	mg/kg DW	<0,0100		<0.0100			
Ametryn	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Atrazine	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Atrazine-2-hydroxy	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0,0100			****
Atrazine-desethyl	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Atrazine-desisopropyl	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Carbofuran	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		80WA	
Chlorfenvinphos	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Chlorotoluron	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Chlorpyrifos	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100		ER70	
Cyanazine	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Desmetryn	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Dimethoate	S-PESLMSB1	0.0100	mg/kg DW	<0,0100		<0.0100			
Diuron	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Fonofos	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Hexazinone	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Isoproturon	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Malathion	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Metamitron	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Metazachlor	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Methidathion	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Metolachlor (isomers)	S-PESLMSB1	0.0100	mg/kg DW	<0,0100		<0.0100	e		
Metribuzin		0.0100	mg/kg DW	<0.0100	*-	< 0.0100			
Pendimethalin	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Phorate	S-PESLMSB1	0.0100	mg/kg DW	<0,0100		<0.0100			••
Phosalone	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Phosphamidon	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Prometon	S-PESLMSB1			<0.0100		<0.0100			
Prometryn	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Propazine	S-PESLMSB1	0.0100	mg/kg DW			<0.0100			
Sebuthylazine	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Simazine	S-PESLMSB1	0.0100	mg/kg DW	<0.0100					
Simetryn	S-PESLMSB1	0.0100	mg/kg DW	<0,0100		<0,0100	*	••••	
Terbuthylazine	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			

Sub-Matrix: SOIL	Client sample ID			2020/81197		2020/81198		EUDF	
		Laborate	ory sample ID	PR2063532	-007	PR2063532-008			
	С	lient sampli	ng date / time	24-Jun-20	20	24-Jun-20	20		
Parameter	Method	LOR	Unit	Result	MU	Result	мu	Result	MU
Pesticides - Continued					and Cro		·		
Terbuthylazine-desethyl	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Terbuthylazine-hydroxy	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
Terbutryn	S-PESLMSB1	0.0100	mg/kg DW	<0.0100		<0.0100			
PBBs					hung on old		:		
PBB 153	S-OCPECD04	0,010	mg/kg DW	<0.010		<0,010			
Sample Preparation					e e e re				
Amount	S-PEXT42	0.1	9	20.05		20.28	[

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component. Measurement uncertainty is expressed as expanded measurement uncertainty with coverage factor k = 2, representing 95% confidence level.

Key: LOR = Limit of reporting; MU = Measurement Uncertainty. The MU does not include sampling uncertainty.

The end of result part of the certificate of analysis

Brief Method Summaries

Analytical Methods	Method Descriptions
Location of test perform	ance: Bendlova 1687/7 Ceska Lipa Czech Republic 470 01
S-LCBD-GR	CZ_SOP_D06_07_125 (CSN EN 13040) Determination of laboratory compacted bulk density (LCBD)
Location of test perform	ance: Na Harle 336/9 Prague 9 - Vysocany Czech Republic 190 00
S-DRY-GRCI	CZ_SOP_D06_01_045 (CSN_ISO_11465, CSN_EN_12880, CSN_EN_14346), CZ_SOP_D06_07_046 (CSN_ISO_11465, CSN_EN
	12830, CSN EN 14346, CSN 46 5735) Determination of dry matter by gravimetry and determination of moisture by calculation
	from measured values.
S-HG-AFSHB	CZ SOP D06 02 096 (CSN EN ISO 17852, PSA Application Note 025, ISO 16772, samples prepared as per
	CZ_SOP_D06_02_J02 (CSN_EN_13657, ISO_11466) chap. 10.3 to 10.16, 10.17.5, 10.17.6, 10.17.9 to 10.17.14)
	Determination of Mercury by Fluorescence Spectrometry. Sample was homogenized and mineralized by aqua regia prior to
	analysis.
S-METMSHB1	CZ_SOP_D06_02_002 (US_EPA_200.8, CSN_EN_ISO_17294-2, US_EPA_6020A, samples prepared as per
	CZ_SOP_D06_02_J02 (CSN_EN_13657, ISO_11466) chap. 10.3 to 10.16, 10.17.5, 10.17.6, 10.17.9 to 10.17.14)
	Determination of elements by mass spectrometry with inductively coupled plasma and stoichiometric calculations of
	compounds concentration from measured values. Sample was homogenized and mineralized by aqua regia prior to analysis.
S-OCPECD01	CZ_SOP_D06_03_169 (US_EPA_8081, ISO_10382, samples prepared as per CZ_SOP_D06_03_P01 chap. 9.2
	CZ_SOP_D06_03_P02 chap. 9.2) Determination of organochlorine pesticides and other halogen compounds by gas
	chromatography method with ECD detection and calculation of organochlorine pesticides and other halogen compounds
	sums from measured values
S-OCPECD04	CZ_SOP_D06_03_169 (US EPA 8081, ISO 10382, samples prepared as per CZ_SOP_D06_03_P01 chap. 9.2
	CZ_SOP_D06_03_P02 chap. 9.2) Determination of organochlorine pesticides and other halogen compounds by gas
	chromatography method with ECD detection and calculation of organochlorine pesticides and other halogen compounds
	sums from measured values
S-PAHGMS05	CZ_SOP_D06_03_161 (US EPA 8270D, US EPA 8082A, CSN EN 15527, ISO 18287, ISO 10382, CSN EN 15308, samples
	preparation as per CZ_SOP_D06_03_P01, chap. 9.2, 9.3, 9.4.2, US EPA 3546). Determination of semi volatile organic
	compounds by gas chromatography method with MS or MS/MS detection and calculation of semi volatile organic compounds
	sums from measured values
S-PCBGMS05	CZ_SOP_D06_03_161 (US EPA 8270D, US EPA 8082A, CSN EN 15527, ISO 18287, ISO 10382, CSN EN 15308, samples
	preparation as per CZ_SOP_D06_03_P01, chap. 9.2, 9.3, 9.4.2, US EPA 3546). Determination of semi volatile organic
	compounds by gas chromatography method with MS or MS/MS detection and calculation of semi volatile organic compounds
	sums from measured values
S-PESLMSB1	CZ_SOP_D06_03_183,B (CSN EN 15637, US EPA 1694) Determination of pesticides, pesticide metabolites, drug residues
	and other pollutants by liquid chromatography method with MS/MS detection and calculation of pesticides, pesticides
	metabolites, drug residues and other pollutants sums from measured values
S-TPHFID11	CZ_SOP_D06_03_150 (CSN EN 14039, CSN EN ISO 16703, CSN P CEN ISO 16558-2, US EPA 8015, US EPA 3550, TNRCC
	Method 1006) Determination of extractable compounds in the range of hydrocarbons C10 - C40, their fractions calculated
	from the measured values by gas chromatography method with FID detection
S-VOCGMS01	CZ_SOP_D06_03_155 except chap. 10.4 (US EPA 8260, US EPA 5021A, US EPA 5021, US EPA 8015, CSN EN ISO 22155
	CSN EN ISO 15009, CSN EN ISO 16558-1, MADEP 2004, rev. 1.1)
	Determination of volatile organic compounds by gas chromatography method with FID and MS detection and calculation of
	volatile organic
	compounds sums from measured values

Issue Date	07-Jul-2020
Page	: 10 of 10
Work Order	: PR2063532
Client	: TALUM INŠTITUT d.o.o.
las	

Analytical Methods	Method Descriptions
Preparation Methods	Method Descriptions
Location of test performance	e: Na Harfe 336/9 Prague 9 - Vysocany Czech Republic 190 00
* S-PPHOM2	Drying and sieving of sample on the grain size < 2 mm

A '*' symbol preceding any method indicates laboratory or subcontractor non-accredited test. In the case when a procedure belonging to an accredited method was used for non-accredited matrix, would apply that the reported results are non-accredited. Please refer to General Comment section on front page for information. If the report contains subcontracted analysis, those are made in a subcontracted laboratory outside the laboratories ALS Czech Republic, s.r.o.

The calculation methods of summation parameters are available on request in the client service.